Whether the statement ‘The magnetic field is largest where the field lines are closest.’ is true or false.
Answer to Problem 1RQ
True.
Explanation of Solution
Magnetic fields can be represented using diagrams which are similar to those used for electric fields. The direction of the field is indicated by lines. Closeness of the field lines is proportional to the strength of the field. The field will be weak when the field lines are far way. Similarly, the field will be stronger where the field lines are closer.
Magnetic field lines are always directed from the North Pole to the South Pole outside a magnet. They are continuous loops without a beginning or ending. The direction of the field at a particular point will be tangential to the field line at that point. Two magnetic field lines never intercept each other.
Conclusion:
Thus, the statement ‘the magnetic field is largest where the field lines are closest’ is true.
Want to see more full solutions like this?
Chapter 19 Solutions
General Physics, 2nd Edition
- The current in a long solenoid of radius 3 cm and 20 turns cm is varied with time at a rate of 2 A/s. Find the electric field at a distance of 4 cm from die center of the solenoid.arrow_forwardA cosmic-ray electron moves at 7.5 × 106 m/sinches perpendicular to Earth’s magnetic field at an altitude queer the field strength is 1.0 × 105T. What is the radius of the circular path the electron follows?arrow_forwardA toroid with a square cross section 3.0cm3.0cm has an inner radius of 25.0 cm. It is wound with 500 turns of wire, and it carries a current of 2.0 A. What is the strength of the magnetic field at the center of the square cross section?arrow_forward
- An electron moving with a velocity v=(4.0i+3.0j+2.0k)106m/s enters a region where there is a uniform electric field and a uniform magnetic field. The magnetic field is given by v=(1.0i2.0j+4.0k)102T. If the electron travels through a region without being deflected, what is the electric field?arrow_forwardElectrons in Earths upper atmosphere have typical speeds near 6.00 105 m/s. (a) Calculate the magnitude of Earths magnetic field if an electrons velocity is perpendicular to the magnetic field and its circular path has a radius of 7.00 102 m. (b) Calculate the number of times per second that an electron circles around a magnetic field line.arrow_forwardIn a region of space, a magnetic field is uniform over space but increases at a constant rate. This changing magnetic field induces an electric field that (a) increases in time, (b) is conservative, (c) is in the direction of the magnetic field, or (d) has a constant magnitude.arrow_forward
- 12.7 Check Your Understanding What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for an angle of (a) 85°? (b) 89°? The solenoid has 1000 mins in 50 cm with a current of 1.0 A flowing through the coilsarrow_forwardCalculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forwardThe magnitude of the magnetic field 50 cm from a long, thin, straight wire is 8.0T . What is the current through the long wire?arrow_forward
- Magnetic field inside a torus. Consider a torus of rectangular cross-section with inner radius a and outer radius b. N turns of an insulated thin wire are wound evenly on the toms tightly all around the torus arid connected to a battery producing a steady current f in the wire. Assume that the current on the top and bottom surfaces in the figure is radial, and the current on the inner and outer radii surfaces is vertical. Find the magnetic field inside the toms as a function of radial distance r from the axis.arrow_forwardWhen the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0104 T. What is the radius of the loop?arrow_forwardWhat is the magnetic field at P due to the current I in the wire shown?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning