BIOCHEMISTRY (HARDBACK) W/ACCESS CODE
6th Edition
ISBN: 9781337194204
Author: GARRETT
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19P
Interpretation Introduction
To explain:
Inactivation of Aconitase by Fluoroacetate.
Introduction:
The 2R, 3R-fluorocitrate inactivates the aconitase. In the citrate synthase reaction, fluoroacetate results in the formation of fluorocitrate. The stoichiometric release of fluoride ion accompanied the inactivation by the fluorocitrate.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A hospital blood processing unit uses apheresis to concentrate red blood cells (RBCs) fromwhole blood donations. Whole blood is drawn from a donor at a rate of 100 g/min and passedthrough a centrifuge-based apheresis system. The whole blood contains 45% RBC and 1%WBCs and platelets by mass, with the remainder consisting of plasma. The separated plasma andnon-RBC components are returned to the donor at a rate of 90 g/min.The goal of the system is to collect a concentrated RBC fraction containing 80% red blood cells.Assume that red blood cells do not break down during processing and that no fluid loss occurs inthe system.(a) How long will it take to collect 100g of the concentrated RBC fraction?
Please give an intuitive explanation of the blood-brain barrier. Specifically, what is it, what is its structure and function, what types of cells compose it, etc.,..?
Obtain the sequence for the 5-HT receptor HTR1A and generate a hydropathy plot usingthe ExPASY tool ProtScale, the appropriate window, and the Kyte-Doolittle weightingalgorithm. How many transmembrane domains are present in this receptor?
Chapter 19 Solutions
BIOCHEMISTRY (HARDBACK) W/ACCESS CODE
Ch. 19 - Radiolabeling with 14C-Glutamate Describe the...Ch. 19 - Prob. 2PCh. 19 - Assessing the Effect of Active-Site...Ch. 19 - Understanding the Mechanism of the -Ketoglutarate...Ch. 19 - Understanding the Action of Fluoroacetate on the...Ch. 19 - Prob. 6PCh. 19 - Prob. 7PCh. 19 - Prob. 8PCh. 19 - Prob. 9PCh. 19 - Prob. 10P
Ch. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - Understanding the Oxidation of Glucose and Its...Ch. 19 - Prob. 18PCh. 19 - Prob. 19PCh. 19 - Prob. 20PCh. 19 - Complete oxidation of a 16-carbon fatty acid can...Ch. 19 - Study Figure 19.18 and decide which of the...Ch. 19 - Prob. 23P
Knowledge Booster
Similar questions
- From the reaction data below, determine whether the reaction is first order or second order and calculate the rate constant. Time (s) 0 Reactant (mM) 5.4 1 4.6 2 3.9 3 3.2 4 2.7 5 2.3 Only a plot of In[reactant] versus t gives a straight line, so the reaction is first order . The negative of the slope, k, is 0.171arrow_forwardHair grows at a rate of about 20 cm/yr. All this growth is concentrated at the base of the hair fiber, where a-keratin filaments are synthesized inside living epidermal cells and assembled into ropelike structures. Two-chan 14 Protofilament 20-30 A Two-chain Intermediate flament -Protob Protofilament Cross section of a hair The fundamental structural element of a keratin is the a helix, which has 3.6 amino acid residues per turn and a rise of 5.4 A perlum. 54A (36) Amino terminus Carbon Hydrogen Oxygen Nitrogen group Carboxyl terminus Assuming that the biosynthesis of a helical keratin chains is the rate-limiting factor in the growth of hair, calculate the rate at which peptide bonds of a-keratin chains must be synthesized (peptide bonds per second) to account for the observed yearly growth of hair. 0422 rate of peptide bond formation: Income bonds/sarrow_forwardSpecific rotation is a measure of a solution's capacity to rotate circularly polarized light. The unfolding of the a helix of a polypeptide to a random conformation is accompanied by a large decrease in specific rotation. Polyglutamate, a polypeptide made up of only 1-Glu residues, has the a helix conformation at pH 3. When researchers raise the pH to 7, there is a large decrease in the specific rotation of the solution. Similarly, polylysine (1.-Lys residues) is an a helix at pH 10, but when researchers lower the pH to 7 the specific rotation also decreases, as shown in the graph. a Helix Specific rotation Poly(Glu) a Helix Random conformation Poly(Lys) Random conformation T + ° 2 4 6 В 10 12 14 PH Complete the statements about the molecular mechanism for these changes in specific rotation. Increasing the pH of a polyglutamate solution from 6 to 7 causes the carboxyl group of each glutamate residue Comed Artwer lose a proton. The negatively charged groups in each glutamate residue…arrow_forward
- From the reaction data below, determine whether the reaction is first order or second order and calculate the rate constant. Time (s) 0 Reactant (mM) 6.2 1 3.1 2 2.1 3 1.6 4 1.3 5 1.1 Only a plot of 1/[reactant] versus t gives a straight line, so the reaction is 0.150 mM-1 s-1 . S second order . The slope, k, isarrow_forwardFrom the reaction data below, determine whether the reaction is first order or second order and calculate the rate constant. Time (s) 0 Reactant (mM) 5.4 1 4.6 2 3.9 3 3.2 4 2.7 5 2.3 Only a plot of In[reactant] versus t gives a straight line, so the reaction is s-1. . The negative of the slope, k, isarrow_forwardA protein has a molecular mass of 400 kDa when measured by size-exclusion chromatography. When subjected to gel electrophoresis in the presence of sodium dodecyl sulfate (SDS), the protein gives three bands with molecular masses of 180, 160, and 60 kDa. When electrophoresis is carried out in the presence of SDS and dithiothreitol (DTT), three bands again form, this time with molecular masses of 160, 90, and 60 kDa. How many subunits does the protein have, and what is the molecular mass of each? four subunits: 180, 160, 90, and 60 kDa three subunits: 180, 160, and 60 kDa three subunits: 160, 90, and 60 kDa four subunits: 160, 90, 90, and 60 kDa Correct Answerarrow_forward
- Calculate KM and Vmax from the following data: KM= i Vmax [S] (μM) vo (mM.s-¹) 0.1 0.34 0.2 0.53 0.4 0.74 0.8 0.91 1.6 1.04 μM mM s-1arrow_forwardPropose a detailed chemical mechanism for the enzyme catalyzed reaction below and briefly note similarities, if any, to enzymes that we've studied. CO2 + CO2 2 CO2 HO CH3arrow_forwardState and describe the four stages of protein formation, please include the types of bonds at each stage.arrow_forward
- Please state and describe the four different types of non-covalent interactions.arrow_forwardPls help with these three questionsarrow_forward11. Which of the compounds below is the major product of the following reaction sequence? NOTE: PCC is pyridinium chlorochromate 1. BH 3 PCC 2. H2O2, NaOH NH HN ΗΝ, A B C CH3NH2, NaBH3CN D E NHarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577206/9781305577206_smallCoverImage.gif)
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning