EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 19.63AP
(a)
To determine
To explain: Weather the length difference is remains constant at all temperature or not.
(b)
To determine
To describe: The lengths of the copper and steel rod at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 19 - Prob. 19.1QQCh. 19 - Consider the following pairs of materials. Which...Ch. 19 - If you are asked to make a very sensitive glass...Ch. 19 - Two spheres are made of the same metal and have...Ch. 19 - A common material for cushioning objects in...Ch. 19 - On a winter day, you turn on your furnace and the...Ch. 19 - Markings to indicate length are placed on a steel...Ch. 19 - When a certain gas under a pressure of 5.00 106...Ch. 19 - If the volume of an ideal gas is doubled while its...Ch. 19 - The pendulum of a certain pendulum clock is made...
Ch. 19 - A temperature of 162F is equivalent to what...Ch. 19 - A cylinder with a piston holds 0.50 m3 of oxygen...Ch. 19 - What would happen if the glass of a thermometer...Ch. 19 - A cylinder with a piston contains a sample of a...Ch. 19 - Two cylinders A and B at the same temperature...Ch. 19 - A rubber balloon is filled with 1 L of air at 1...Ch. 19 - The average coefficient of linear expansion of...Ch. 19 - Suppose you empty a tray of ice cubes into a bowl...Ch. 19 - A hole is drilled in a metal plate. When the metal...Ch. 19 - On a very cold day in upstate New York, the...Ch. 19 - Common thermometers are made of a mercury column...Ch. 19 - A piece of copper is dropped into a beaker of...Ch. 19 - Prob. 19.3CQCh. 19 - Some picnickers stop at a convenience store to buy...Ch. 19 - Prob. 19.5CQCh. 19 - Prob. 19.6CQCh. 19 - An automobile radiator is filled to the brim with...Ch. 19 - When the metal ring and metal sphere in Figure...Ch. 19 - Prob. 19.9CQCh. 19 - Prob. 19.10CQCh. 19 - Prob. 19.1PCh. 19 - The temperature difference between the inside and...Ch. 19 - Prob. 19.3PCh. 19 - Prob. 19.4PCh. 19 - Liquid nitrogen has a boiling point of 195.81C at...Ch. 19 - Death Valley holds the record for the highest...Ch. 19 - Prob. 19.7PCh. 19 - The concrete sections of a certain superhighway...Ch. 19 - The active element of a certain laser is made of a...Ch. 19 - Prob. 19.10PCh. 19 - A copper telephone wire has essentially no sag...Ch. 19 - A pair of eyeglass frames is made of epoxy...Ch. 19 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 19 - Prob. 19.14PCh. 19 - A square hole 8.00 cm along each side is cut in a...Ch. 19 - The average coefficient of volume expansion for...Ch. 19 - At 20.0C, an aluminum ring has an inner diameter...Ch. 19 - Why is the following situation impossible? A thin...Ch. 19 - A volumetric flask made of Pyrex is calibrated at...Ch. 19 - Review. On a day that the temperature is 20.0C, a...Ch. 19 - Prob. 19.21PCh. 19 - Review. The Golden Gate Bridge in San Francisco...Ch. 19 - Prob. 19.23PCh. 19 - A sample of a solid substance has a mass m and a...Ch. 19 - An underground gasoline lank can hold 1.00 103...Ch. 19 - A rigid lank contains 1.50 moles of an ideal gas....Ch. 19 - Prob. 19.27PCh. 19 - Your father and your younger brother are...Ch. 19 - Gas is contained in an 8.00-L vessel al a...Ch. 19 - A container in the shape of a cube 10.0 cm on each...Ch. 19 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 19 - The pressure gauge on a lank registers the gauge...Ch. 19 - Prob. 19.33PCh. 19 - Prob. 19.34PCh. 19 - A popular brand of cola contains 6.50 g of carbon...Ch. 19 - In state-of-the-art vacuum systems, pressures as...Ch. 19 - An automobile tire is inflated with air originally...Ch. 19 - Review. To measure how far below the ocean surface...Ch. 19 - Review. The mass of a hot-air balloon and its...Ch. 19 - A room of volume V contains air having equivalent...Ch. 19 - Review. At 25.0 in below the surface of the sea,...Ch. 19 - Prob. 19.42PCh. 19 - A cook puts 9.00 g of water in a 2.00-L pressure...Ch. 19 - The pressure gauge on a cylinder of gas registers...Ch. 19 - Prob. 19.45APCh. 19 - A steel beam being used in the construction of a...Ch. 19 - A spherical steel ball bearing has a diameter of...Ch. 19 - A bicycle tire is inflated to a gauge pressure of...Ch. 19 - In a chemical processing plant, a reaction chamber...Ch. 19 - Why is the following situation impossible? An...Ch. 19 - A mercury thermometer is constructed as shown in...Ch. 19 - A liquid with a coefficient of volume expansion ...Ch. 19 - Prob. 19.53APCh. 19 - Two metal bars are made of invar and a third bar...Ch. 19 - A student measures the length of a brass rod with...Ch. 19 - The density of gasoline is 730 kg/m3 at 0C. Its...Ch. 19 - A liquid has a density . (a) Show that the...Ch. 19 - Prob. 19.58APCh. 19 - Review. A dock with a brass pendulum has a period...Ch. 19 - A bimetallic strip of length L is made of two...Ch. 19 - The rectangular plate shown in Figure P18.37 has...Ch. 19 - The measurement of the average coefficient of...Ch. 19 - Prob. 19.63APCh. 19 - A vertical cylinder of cross-sectional area A is...Ch. 19 - Review. Consider an object with any one of the...Ch. 19 - (a) Show that the density of an ideal gas...Ch. 19 - You are watching a new bridge being built near...Ch. 19 - You are watching a new bridge being built near...Ch. 19 - Review. (a) Derive an expression for the buoyant...Ch. 19 - Prob. 19.70APCh. 19 - Starting with Equation 18.11, show that the total...Ch. 19 - Review. A steel wire and a copper wire, each of...Ch. 19 - Review. A steel guitar string with a diameter of...Ch. 19 - A cylinder is closed by a piston connected to a...Ch. 19 - Prob. 19.75CPCh. 19 - A cylinder that has a 40.0-cm radius and is 50.0...Ch. 19 - Prob. 19.77CPCh. 19 - Review. A house roof is a perfectly flat plane...Ch. 19 - A 1.00-km steel railroad rail is fastened securely...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In 1986, a gargantuan iceberg broke away from the Ross Ice Shelf in Antarctica. It was approximately a rectangle 160 km long, 40.0 km wide, and 250 m thick. (a) What is the mass of this iceberg, given that the density of ice is 917kg/m3 ? (b) How much heat transfer (in joules) is needed to melt it? (c) How many years would it take sunlight alone to melt ice this thick, if the ice absorbs an average of 100W/m2, 12.00 h per day?arrow_forwardThe distance between telephone poles is 30.50 m in a neighborhood where the temperature ranges from 35C to 40C. If you hang a copper cable between two adjacent poles on a day when the temperature is 22.30C, what is the minimum length of the copper cable you must use for the cable to remain connected to the poles all year? Assume the cable is straight, and ignore the effect of gravity on the cable. Consider to have four significant figures and report your answer to four significant figures.arrow_forwardOne way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forward
- A glass windowpane in a home is 0.620 cm thick and has dimensions of 1.00 in 2.00 in. On a certain day, the temperature of the interior surface of the glass is 25.0C and the exterior surface temperature is 0C. (a) What is the rate at which energy is transferred by heat through the glass? (b) How much energy is transferred through the window in one day, assuming the temperatures on the surfaces remain constant?arrow_forwardA spherical shell has inner radius 3.00 cm and outer radius 7.00 cm. It is made of material with thermal conductivity k = 0.800 W/m C. The interior is maintained at temperature 5C and the exterior at 40C. After an interval of time, the shell reaches a steady state with the temperature at each point within it remaining constant in time. (a) Explain why the rate of energy transfer P must be the same through each spherical surface, of radius r, within the shell and must satisfy dTdr=P4kr2 (b) Next, prove that 5dT=P4k0.030.07r2dr where T is in degrees Celsius and r is in meters. (c) Find the rate of energy transfer through the shell. (d) Prove that 5TdT=1.840.03rr2dr where T is in degrees Celsius and r is in meters. (e) Find the temperature within the shell as a function of radius. (f) Find the temperature at r = 5.00 cm, halfway through the shell.arrow_forwardThe rectangular plate shown in Figure P16.60 has an area Ai equal to w. If the temperature increases by T, each dimension increases according to Equation 16.4, where is the average coefficient of linear expansion. (a) Show that the increase in area is A = 2Ai T. (b) What approximation does this expression assume?arrow_forward
- Two metal bars are made of invar and a third bar is made of aluminum. At 0C, each of the three bars is drilled with two holes 40.0 cm apart. Pins are put through the holes to assemble the bars into an equilateral triangle as in Figure P18.31. (a) First ignore the expansion of the invar. Find the angle between the invar bars as a function of Celsius temperature. (b) Is your answer accurate for negative as well as positive temperatures? (c) Is it accurate for 0C? (d) Solve the problem again, including the expansion of the invar. Aluminum melts at 660C and invar at 1 427C. Assume the tabulated expansion coefficients are constant. What are (e) the greatest and (f) the smallest attainable angles between the invar bars? Figure P18.31arrow_forwardEqual 0.400-kg masses of lead and tin at 60.0C are placed in 1.00 kg of water at 20.0C. (a) What is the equilibrium temperature of the system? (b) If an alloy is half lead and half tin by mass, what specific heat would you anticipate for the alloy? (c) How many atoms of tin NSn, are in 0.400 kg of tin, and how many atoms of lead NPb are in 0.400 kg of lead? (d) Divide the number NSn of tin atoms by the number NPb of lead atoms and compare this ratio with the specific heat of tin divided by the specific beat of lead. What conclusion can be drawn?arrow_forwardA sample of a solid substance has a mass m and a density 0 at a temperature T0. (a) Find the density of the substance if its temperature is increased by an amount T in terms of the coefficient of volume expansion b. (b) What is the mass of the sample if the temperature is raised by an amount T?arrow_forward
- The thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m K and 0.020 W/m K, respectively, while other tissues inside the body have conductivities of about 0.50 W/m K. Assume that between the core region of the body and the skin sin face lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. (b) Find the rate of energy loss when the core temperature is 37C and the exterior temperature is 0C. Assume that both a protective layer of clothing and an insulating layer of unmoving air a absent, and a body area of 2.0 m2.arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY