Concept explainers
(a)
Interpretation:
The mean free paths for argon and xenon atoms are to be calculated.
Concept introduction:
The mean free path of collisions between gaseous atoms is given by the formula given below.
The average collision frequency of one atom is given by the formula,
The total number of collisions is given by the formula,
Answer to Problem 19.49E
The mean free paths for argon and xenon atoms are
Explanation of Solution
The mean free path of collisions between gaseous atoms is given by the formula given below.
Where,
•
•
•
•
Substitute the values in the equation (1) for argon atom as given below.
Substitute the values in the equation (1) for xenon atom as given below.
The mean free paths for argon and xenon atoms are
(b)
Interpretation:
The average collision frequencies for argon and xenon atoms are to be calculated.
Concept introduction:
The mean free path of collisions between gaseous atoms is given by the formula given below.
The average collision frequency of one atom is given by the formula,
The total number of collisions is given by the formula,
Answer to Problem 19.49E
The average collision frequencies for argon and xenon atoms are
Explanation of Solution
The average collision frequency of one atom is given by the formula,
Where,
•
•
•
•
•
The mixture given is a
Substitute the values in the equation (2) for argon atom as given below.
Substitute the values in the equation (2) for xenon atom as given below.
The average collision frequencies for argon and xenon atoms are
(c)
Interpretation:
The total number of collisions between argon and xenon atoms is to be calculated.
Concept introduction:
The mean free path of collisions between gaseous atoms is given by the formula given below.
The average collision frequency of one atom is given by the formula,
The total number of collisions is given by the formula,
Answer to Problem 19.49E
The total number of collisions between argon and xenon atoms is
Explanation of Solution
The total number of collisions is given by the formula,
Where,
•
•
•
•
•
The mixture given is a
Substitute the values in the equation (3) as given below.
The total number of collisions between argon and xenon atoms is
Want to see more full solutions like this?
Chapter 19 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forwardNonearrow_forward
- Show work. don't give Ai generated solutionarrow_forwardPart II. count the expected number of signals in the 1H-NMR spectrum of these compounds HO 0 одев * Cl -cl "D"arrow_forwardPart I. Create a splitting tree diagram to predict the multiplet pattern of proton Hb in the compound below: 3 (Assume that "Jab >>> ³JbC) Ha Hb He он Ha NH2 Ha HCarrow_forward
- SH 0 iq noitzouDarrow_forwardNonearrow_forward+ HCl →? Draw the molecule on the canvas by choosing buttons from the Tools (for bonas), Atoms and Advanced Template toolbars. The single bond is active by default. + M C + H± 2D EXP. CONT. K ? L 1 H₁₂C [1] A HCN O S CH3 CH 3 CI Br HC H₂ CH CH CH3 - P Farrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning