(a)
Interpretation:
The appearance of the high resolution 13C spectrum of methyl formate when the protons are not decoupled should be predicted.
Concept introduction:
13C isotope of carbon has low
(b)
Interpretation:
The appearance of the high resolution 13C spectrum of acetaldehyde when the protons are not decoupled should be predicted.
Concept introduction:
13C isotope of carbon has low natural abundance. 12C is the most abundant isotope in nature. But it is NMR inactive because the spin quantum number is zero. Since 13C is less likely to find in nature there is a very low probability of finding two 13C nuclei which are close to each other. So there is no observable spin-spin coupling between adjacent carbons in 13C NMR spectra. But there are 13C and 1H coupling which leads to large number of splitting patterns in the spectrum. To obtain simplified 13C spectrum scientists use a method called broadband decoupling. This technique avoids the C-H coupling signal, so that all carbon signals appear as singlets.
(c)
Interpretation:
The appearance of the high resolution 13C spectrum of acetone when the protons are not decoupled should be predicted.
Concept introduction:
13C isotope of carbon has low natural abundance. 12C is the most abundant isotope in nature. But it is NMR inactive because the spin quantum number is zero. Since 13C is less likely to find in nature there is a very low probability of finding two 13C nuclei which are close to each other. So there is no observable spin-spin coupling between adjacent carbons in 13C NMR spectra. But there are 13C and 1H coupling which leads to large number of splitting patterns in the spectrum. To obtain simplified 13C spectrum scientists use a method called broadband decoupling. This technique avoids the C-H coupling signal, so that all carbon signals appear as singlets.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning