![Student Study Guide for Silberberg Chemistry: The Molecular Nature of Matter and Change](https://www.bartleby.com/isbn_cover_images/9780078131615/9780078131615_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Concept introduction:
Titration:
Titration is a quantitative chemical analysis to determine the concentration of an identified analyte. The titrant is the reagent which is prepared as a standard solution of known concentration volume. The titrant reacts with the analyte to determine the analyte’s concentration. The volume of the titrant reacting with analyte is called the titration volume.
Equivalence point:
Equivalence point in the titration reaction is the point where the amount of titrant added is absolutely enough to neutralize completely the analyte. The moles of titrant and the moles of analyte are same at this point.
pH:
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.139P
Explanation of Solution
HF being a weak acid dissociates slowly in the solution producing less number of
Let the dissociation constant be x.
Given that initially the concentration of HF is
Now, substituting the values,
(
Hence, concentration of
Thus
Hence
(b)
Interpretation:
Amount of titrant (
Concept introduction:
Titration:
Titration is a quantitative chemical analysis to determine the concentration of an identified analyte. The titrant is the reagent which is prepared as a standard solution of known concentration volume. The titrant reacts with the analyte to determine the analyte’s concentration. The volume of the titrant reacting with analyte is called the titration volume.
Equivalence point:
Equivalence point in the titration reaction is the point where the amount of titrant added is absolutely enough to neutralize completely the analyte. The moles of titrant and the moles of analyte are same at this point.
pH:
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.139P
The amount of titrant required to achieve equivalence point is
Explanation of Solution
Volume of
Strength of
Strength of
According to volumetric titration,
Therefore,
Hence, the amount of titrant required to achieve equivalence point is
(c)
Interpretation:
The value of
Concept introduction:
Titration:
Titration is a quantitative chemical analysis to determine the concentration of an identified analyte. The titrant is the reagent which is prepared as a standard solution of known concentration volume. The titrant reacts with the analyte to determine the analyte’s concentration. The volume of the titrant reacting with analyte is called the titration volume.
Equivalence point:
Equivalence point in the titration reaction is the point where the amount of titrant added is absolutely enough to neutralize completely the analyte. The moles of titrant and the moles of analyte are same at this point.
pH:
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.139P
Explanation of Solution
Given that
Now according to question
Number of moles of
Hence number of moles of
Thus the concentration of
Thus the concentration of
Hence,
From Henderson-Hasselbalch equation,
Hence,
Hence,
(d)
Interpretation:
Concept introduction:
Titration:
Titration is a quantitative chemical analysis to determine the concentration of an identified analyte. The titrant is the reagent which is prepared as a standard solution of known concentration volume. The titrant reacts with the analyte to determine the analyte’s concentration. The volume of the titrant reacting with analyte is called the titration volume.
Equivalence point:
Equivalence point in the titration reaction is the point where the amount of titrant added is absolutely enough to neutralize completely the analyte. The moles of titrant and the moles of analyte are same at this point.
pH:
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.139P
Explanation of Solution
At equivalence point we are considering the equation:
At equivalence point the number of moles of
Now,
Thus the acid dissociation constant of the base can be calculated as,
Say concentration of
Thus the concentration of
At
Hence, concentration of
Thus
Hence
(e)
Interpretation:
Value of
Concept introduction:
Titration:
Titration is a quantitative chemical analysis to determine the concentration of an identified analyte. The titrant is the reagent which is prepared as a standard solution of known concentration volume. The titrant reacts with the analyte to determine the analyte’s concentration. The volume of the titrant reacting with analyte is called the titration volume.
Equivalence point:
Equivalence point in the titration reaction is the point where the amount of titrant added is absolutely enough to neutralize completely the analyte. The moles of titrant and the moles of analyte are same at this point.
pH:
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.139P
The value of
Explanation of Solution
After equivalence point there will be excess
Thus concentration of
At
Hence, concentration of
Thus
The value of
Want to see more full solutions like this?
Chapter 19 Solutions
Student Study Guide for Silberberg Chemistry: The Molecular Nature of Matter and Change
- 4. Which one of the following is trans-1-tert-butyl-3-methylcyclohexane in its most stable conformation? (NOTE: Correct answer must be trans- and must have a 1,3-arrangement of groups.) C(CH3)3 CH₁₂ A H,C D H₂C C(CH) C(CH3)3 C B CH C(CH) C(CH3)3 Earrow_forwardPredict the Product. Predict the major organic product for the following reaction:arrow_forwardNonearrow_forward
- 3. Which one of the following is the lowest energy, most stable conformation of 1-bromopropane? H H H H H H H H CH3 HH Br H CH3 b b b b b CH3 A Br Br H H B CH3 Br H C H H H D CH3 H Br H E Harrow_forwardIn evolution, migration refers to the movement of alleles between populations. In your drawings, compare and contrast migration in evolutionary terms vs. in ecological terms. True Falsearrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 31 I 1 :0: O: C 1 1 H Na Select to Add Arrows CH3CH2CCNa 1arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)