The standard free energy change of given voltaic cell should be calculated by using standard free energy changes of reactants and products and half cell potential for given reaction should be calculated. Concept introduction: Free energy change: In thermodynamics the cell potential is known as maximum work of the cell and it is equal to free energy change of the cell and it is given by, ΔG = -nFE cell Where, ΔG is free energy change n is number of electron transferred F is faraday constant E cell is cell potential Free energy change: The free energy change of a reaction is given by the subtraction of free energy changes of reactants from free energy changes of reactants. ΔG = ∑ nΔG f ° (products)- ∑ mΔG f ° (reactants)
The standard free energy change of given voltaic cell should be calculated by using standard free energy changes of reactants and products and half cell potential for given reaction should be calculated. Concept introduction: Free energy change: In thermodynamics the cell potential is known as maximum work of the cell and it is equal to free energy change of the cell and it is given by, ΔG = -nFE cell Where, ΔG is free energy change n is number of electron transferred F is faraday constant E cell is cell potential Free energy change: The free energy change of a reaction is given by the subtraction of free energy changes of reactants from free energy changes of reactants. ΔG = ∑ nΔG f ° (products)- ∑ mΔG f ° (reactants)
Solution Summary: The author explains how the free energy change of a given voltaic cell reaction is calculated by subtraction of reactants and products.
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 19, Problem 19.127QP
(a)
Interpretation Introduction
Interpretation:
The standard free energy change of given voltaic cell should be calculated by using standard free energy changes of reactants and products and half cell potential for given reaction should be calculated.
Concept introduction:
Free energy change:
In thermodynamics the cell potential is known as maximum work of the cell and it is equal to free energy change of the cell and it is given by,
The free energy change of a reaction is given by the subtraction of free energy changes of reactants from free energy changes of reactants.
ΔG=∑nΔGf°(products)-∑mΔGf°(reactants)
(b)
Interpretation Introduction
Interpretation:
The standard free energy change of given voltaic cell should be calculated by using standard free energy changes of reactants and products and half cell potential for given reaction should be calculated.
Concept introduction:
Free energy change:
In thermodynamics the cell potential is known as maximum work of the cell and it is equal to free energy change of the cell and it is given by,
You have started a patient on a new drug. Each dose introduces 40 pg/mL of drug after redistribution and prior to elimination. This drug is administered at 24 h intervals and has a half life of 24 h. What will the concentration of drug be after each of the first six doses? Show your work
a. What is the concentration after the fourth dose? in pg/mL
b. What is the concentration after the fifth dose? in pg/mL
c. What is the concentration after the sixth dose? in pg/mL
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell