MOLECULAR NATURE OF MATTER 7/E LL W/AC
7th Edition
ISBN: 9781119664796
Author: JESPERSEN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 131RQ
Interpretation Introduction
Interpretation:
The list of scientific reasons to invest money in the redox flow batteries are to be written.
Concept Introduction:
Redox flow batteries are storage devices, which store energy in the electrolyte solutions. It is a type of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An anda bircen çok oturum açan kullanıcinın sinavi geçersiz sayılacaktır!.
SORU-13
M)Bo birak
I- The potential created between the metal and the solution in equilibrium is called the electrode potential.
Il- The potential formed between metal and solution in equilibrium is called corrosion potential.
III-When each metal is immersed in a 1 molar solution of its ions, the potential measured at 25 °C is called the standard
electrode potential of that metal.
IV. If a metal is immersed in a solution containing its ions, the metal (+) is charged with the solution (-).
Which or which of the above is wrong.
Yalnız I
A-)
I ve II
B-)
,I ve lII
C-)
D-)
l ve IV
An antique automobile bumper is to be chrome plated. The bumper, which is dipped into an acidic Cr2072- solution, serves as a cathode of an electrolytic cell. The atomic mass of Cr is 52.00 g/mol. How much electrical energy in kWh is needed to
deposit 193 g of Cr(s) onto the bumper using a 4.9 V as voltage source?
Show your answers in two decimal places. Do NOT include units in your final answer.
Report all answers with the proper number of significant figures.
In an electrolysis experiment similar to the one employed this experiment; a student
observed that his unknown metal anode lost 0.238 grams while a total volume of
94.50 mL of hydrogen was being produced. The temperature of the solution was
25°C and the barometric pressure was 739 mm Hg. The difference between the
water levels in the beaker and buret was negligible. The vapor pressure of water at
25°C is 23.8 mm Hg.
Based on the information provided and the lab handout, what pressure of hydrogen
is collected, in atmospheres?
Note: Your answer is assumed to be reduced to the highest power possible.
Your Answer:
x10
Answer
units
Chapter 19 Solutions
MOLECULAR NATURE OF MATTER 7/E LL W/AC
Ch. 19 - Sketch and label a galvanic cell that makes use of...Ch. 19 - Write the anode and cathode half-reactions for the...Ch. 19 - Copper metal and zinc metal will both reduce Ag+...Ch. 19 - A galvanic cell has a standard cell potential of...Ch. 19 - Using the positions of the respective...Ch. 19 - Use the positions of the half-reactions in Table...Ch. 19 - What are the overall cell reaction and the...Ch. 19 - What are the overall cell reaction and the...Ch. 19 - A 1.0 M solution of copper(II) perchlorate and 1.0...Ch. 19 - A galvanic cell is constructed with two platinum...
Ch. 19 - Prob. 11PECh. 19 - Under standard state conditions, which of the...Ch. 19 - A certain reaction has an Ecello of 0.107 volts...Ch. 19 - Calculate G for the reactions that take place in...Ch. 19 - The calculated standard cell potential for the...Ch. 19 - Use the following half-reactions and the data in...Ch. 19 - A galvanic cell is constructed with a copper...Ch. 19 - In Example 19.9, assume all conditions are the...Ch. 19 - In the analysis of two other water samples by the...Ch. 19 - A galvanic cell is constructed with a copper...Ch. 19 - In the electrolysis of an aqueous solution...Ch. 19 - In the electrolysis of an aqueous solution...Ch. 19 - How many moles of hydroxide ion will be produced...Ch. 19 - How many minutes will it take for a current of...Ch. 19 - What current must be supplied to deposit 0.0500 g...Ch. 19 - Suppose the solutions in the galvanic cell...Ch. 19 - Galvanic Cells What is a galvanic cell? What is a...Ch. 19 - Galvanic Cells
19.2 What is the function of a salt...Ch. 19 - Galvanic Cells In a coppersilver cell, why must...Ch. 19 - Galvanic Cells What is the general name we give to...Ch. 19 - Galvanic Cells In a galvanic cell, do electrons...Ch. 19 - Galvanic Cells Explain how the movement of the...Ch. 19 - Galvanic Cells
19.7 Aluminum will displace tin...Ch. 19 - Galvanic Cells
19.8 Make a sketch of the galvanic...Ch. 19 - Galvanic Cells 19.9 Make a sketch of a galvanic...Ch. 19 - Galvanic Cells Make a sketch of a galvanic cell...Ch. 19 - Prob. 11RQCh. 19 - Cell Potentials How are standard reduction...Ch. 19 - If you set up a galvanic cell using metals not...Ch. 19 - Cell Potentials Galvanic cells are set up so that...Ch. 19 - Utilizing Standard Reduction Potentials Describe...Ch. 19 - Utilizing Standard Reduction Potentials What do...Ch. 19 - Prob. 17RQCh. 19 - Utilizing Standard Reduction Potentials Describe...Ch. 19 - Prob. 19RQCh. 19 - Prob. 20RQCh. 19 -
19.21 What is the equation that relates the...Ch. 19 - EcelloandG Show how the equation that relates the...Ch. 19 - Ecello and G What is the cell potential of a...Ch. 19 - Cell Potentials and Concentration 19.24 The cell...Ch. 19 - Cell Potentials and Concentration What is a...Ch. 19 - Cell Potentials and Concentration Describe what...Ch. 19 - Electricity What are the anode and cathode...Ch. 19 - Prob. 28RQCh. 19 - Electricity
19.29 How is a hydrometer constructed?...Ch. 19 - lectricity What reactions occur at the electrodes...Ch. 19 - Electricity
19.31 What chemical reactions take...Ch. 19 - Prob. 32RQCh. 19 - Electricity
19.33 What are the anode, cathode, and...Ch. 19 - Electricity Give two reasons why lithium is such...Ch. 19 - Electricity What are the electrode materials in a...Ch. 19 - Electricity
19.36 What are the electrode materials...Ch. 19 - Prob. 37RQCh. 19 - Electricity Write the cathode, anode, and net cell...Ch. 19 - Electricity What advantages do fuel cells offer...Ch. 19 - Electrolytic Cells What electrical charges do the...Ch. 19 - Electrolytic Cells
19.41 Why must electrolysis...Ch. 19 - Electrolytic Cells Why must NaCl be melted before...Ch. 19 - Electrolytic Cells Write half-reactions for the...Ch. 19 - Electrolytic Cells
19.44 What happens to the pH of...Ch. 19 - Electrolysis Stoichiometry
19.45 What is a...Ch. 19 - Electrolysis Stoichiometry
19.46 Using the same...Ch. 19 - Electrolysis Stoichiometry
19.47 An electric...Ch. 19 - Electrolysis Stoichiometry
19.48 An electric...Ch. 19 - Practical Applications of Electrolysis What is...Ch. 19 - Practical Applications of Electrolysis
19.50...Ch. 19 - Practical Applications of Electrolysis In the...Ch. 19 - Prob. 52RQCh. 19 - Practical Applications of Electrolysis Describe...Ch. 19 - Prob. 54RQCh. 19 - Galvanic Cells Write the half-reactions and the...Ch. 19 - Galvanic Cells Write the half-react ions and the...Ch. 19 - Write the cell notation for the following galvanic...Ch. 19 - Write the cell notation for the following galvanic...Ch. 19 - For each pair of substances, use Table 19.l to...Ch. 19 - 19.60 For each pair of substances, use Table 19.1...Ch. 19 - Use the data in Table 19.1 to calculate the...Ch. 19 - 19.62 Use the data in Table 19.1 to calculate the...Ch. 19 - From the positions of the half-reactions in Table...Ch. 19 - Use the data in Table 19.1 to determine which of...Ch. 19 - 19.65 From the half-reactions below, determine the...Ch. 19 - 19.66 What is the standard cell potential and the...Ch. 19 - What will be the spontaneous reaction among...Ch. 19 - What will be the spontaneous reaction among...Ch. 19 - Will the following reaction occur spontaneously...Ch. 19 - Determine whether the reaction:...Ch. 19 -
19.71 Calculate for the following reaction as...Ch. 19 - EcellandG Calculate G for the reaction...Ch. 19 - Given the following half-reactions and their...Ch. 19 - Calculate Kc for the system Ni2++CoNi+Co2+ Use the...Ch. 19 - 19.75 The system
has a calculated What is the...Ch. 19 - Determine the value of Kc at 25C for the reaction...Ch. 19 - Cell Potentials and Concentrations 19.77 The cell...Ch. 19 - Cell Potentials and Concentrations
19.78 The for...Ch. 19 - *19.79 A cell was set up having the following...Ch. 19 - A silver wire coated with AgCl is sensitive to the...Ch. 19 - At 25C, a galvanic cell was set up having the...Ch. 19 - *19.82 Suppose a galvanic cell was constructed at ...Ch. 19 - *19.83 What is the potential of a concentration...Ch. 19 - *19.84 What is the potential of a concentration...Ch. 19 - Prob. 85RQCh. 19 - Prob. 86RQCh. 19 - What products would we expect at the electrodes if...Ch. 19 - What products would we expect at the electrodes if...Ch. 19 - Using Table 19.1, list the ions in aqueous...Ch. 19 - Prob. 90RQCh. 19 - Electrolysis Stoichiometry
19.91 How many moles of...Ch. 19 - Electrolysis Stoichiometry
19.92 How many moles of...Ch. 19 - 19.93 How many grams of Fe(OH)2 are produced at an...Ch. 19 - 19.94 How many grams of would be produced in the...Ch. 19 - Prob. 95RQCh. 19 - 19.96 How many hours would it take to generate...Ch. 19 - 19.97 How many amperes would be needed to produce...Ch. 19 - 19.98 A large electrolysis cell that produces...Ch. 19 - *19.99 The electrolysis of 250 mL of a brine...Ch. 19 - *19.100 A 100.0 mL sample of 2.00MNaCl was...Ch. 19 - *19.101 A watt is a unit of electrical power and...Ch. 19 - Suppose that a galvanic cell were set up having...Ch. 19 - Prob. 103RQCh. 19 - *19.104 The value of for AgBr is . What will be...Ch. 19 - 19.105 Based only on the half-reactions in Table...Ch. 19 - A student set up an electrolysis apparatus and...Ch. 19 - *19.107 A hydrogen electrode is immersed in a 0.10...Ch. 19 - *19.108 What current would be required to deposit ...Ch. 19 - *19.109 A solution containing vanadium in an...Ch. 19 - Consider the reduction potentials of the following...Ch. 19 - An Ag/AgCl electrode dipping into 1.00MHCl has a...Ch. 19 - Prob. 112RQCh. 19 - Consider the following galvanic cell:...Ch. 19 - The electrolysis of 0.250 L of a brine solution...Ch. 19 - A solution of NaCl in water was electrolyzed with...Ch. 19 - How many milliliters of dry gaseous H2, measured...Ch. 19 - *19.117 At , a galvanic cell was set up having the...Ch. 19 - Given the following reduction half-reactions and...Ch. 19 - The normal range of chloride ions in blood serum...Ch. 19 - An unstirred solution of 2.00 M NaCl was...Ch. 19 - What masses of and O2 in grams would have to react...Ch. 19 - *19.122 Draw an atomic-level diagram of the events...Ch. 19 - *19.123 In biochemical systems, the normal...Ch. 19 - Calculate a new version of Table 19.1 using the...Ch. 19 - In Problem 19.83, the potential at 75C was...Ch. 19 - There are a variety of methods available for...Ch. 19 - *19.128 Most flashlights use two or more batteries...Ch. 19 - 19.129 If two electrolytic cells are placed in...Ch. 19 - Prob. 130RQCh. 19 - Prob. 131RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 9.72 Although it can be a nuisance when a laptop computer freezes up and needs to be rebooted, we accept that as somewhat inevitable. But clearly the need to occasionally reboot the control system for the power grid would not be acceptable. Use the web to research ways that engineers ensure the reliability of crucial systems like the control infrastructure of the grid, and write a paragraph summarizing the main strategies employed.arrow_forward9.70 Residential electric service in the United States generally operates at 120 V, but transmission substations feed power onto the grid at 110 kV or higher. What advantage is realized by transmitting electricity at such a high voltage?arrow_forwardOne of the few industrial-scale processes that produce organic compounds electrochemically is used by the Monsanto Company to produce1,4-dicyanobutane. The reduction reaction is 2CH2CHCH+2H++2eNC(CH2)4CN The NC(CH2)4CN is then chemically reduced using hydrogen gas to H2N(CH2)6NH2, which is used in the production of nylon. What current must be used to produce 150.kg NC(CH2)4CN per hour?arrow_forward
- 9.69 How are the roles of transmission substations and distribution substations in the electrical grid similar? How are they different?arrow_forwardUsing the information thus far in this chapter, explain why battery-powered electronics perform poorly in low temperatures.arrow_forwardA rebreathing gas mask contains potassium superoxide, KO2, which reacts with moisture in the breath to give oxygen. 4KO2(s)+2H2O(l)4KOH(s)+3O2(g) Estimate the grams of potassium superoxide required to supply a persons oxygen needs for one hour. Assume a person requires 1.00 102 kcal of energy for this time period. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 1.00 102 kcal of heat, calculate the amount of oxygen consumed and hence the amount of KO2 required. The ff0 for glucose(s) is 1273 kJ/mol.arrow_forward
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardZinc is produced by electrolytic refining. The electrolytic process, which is similar to that for copper, can be represented by the two half-reactions Zn(impure,s)Zn2++2eZn2++2eZn(pure,s) For this process, a voltage of 3.0 V is used. How many kilowatt hours are needed to produce one metric ton of pure zinc?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- Electrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forwardFossil fuel, nuclear, and hydroelectric power plants all require a transmission network to transport electricity from where it is generated to where it is used. MCFCs, with their smaller size and portability, can be placed much closer to where the power is needed, reducing the need for transmission lines. With this in mind, explain why MCFCs may have a greater advantage for providing power in developing countries versus in developed countries.arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning