Concept explainers
(a)
To calculate:
The hydrogen ions concentration in external medium and in matrix if the
Introduction:
Protons are translocated to external medium from mitochondrial matrix. This results in establishment of
(a)

Explanation of Solution
Explanation:
The
The concentration of
The concentration of
Conclusion:
The concentration of
(b)
To calculate:
Outside to inside ratio of
Introduction:
The concentration of hydrogen ions reflects
(b)

Explanation of Solution
Explanation:
The concentration of
The ratio of the hydrogen ions concentration in the external medium and matrix can be calculated using the following formula:
Substitute values of hydrogen ions concentration in the external medium and hydrogen ions concentration in the matrix. The ratio of the concentration of hydrogen ions in the external medium and matrix is as follows:
Free energy inherent in this concentration difference can be calculated using the following formula
Where,
R is gas constant
T is absolute temperature
Substitute values of C2 and C1 in the above equation. The inherent energy of the reaction will be as follows:
Negative sign of free energy reflects that the inner transmembrane potential is negative. So energy inherent in the concentration difference is
Conclusion:
Energy inherent in the concentration difference is
(c)
To calculate:
The number of protons in actively respiring mitochondrion of liver given that diameter is
Introduction:
The number of protons in respiring mitochondria depends on the volume of the mitochondrion. More the diameter of mitochondrion, more will the protons liberated by it.
(c)

Explanation of Solution
Explanation:
The diameter of the mitochondrion is
Where, π is
r is radius of mitochondrion
Substitute value of r in the formula given above to calculate the volume of mitochondrion. The volume of mitochondrion can be calculated as follows:
Moles of protons in a respiring mitochondrion can be calculated by the following formula:
Substitute value of
Number of protons in a respiring mitochondrion can be calculated by using the following formula:
So, the number of protons in the respiring liver is
Conclusion:
So, the number of protons in the respiring liver is
(d)
To predict:
Whether the
Introduction:
The protons are transported from the matrix to external medium. This creates a proton gradient across the inner mitochondrial membrane. The flow of proton from external matrix into matrix derives the synthesis of ATP.
(d)

Explanation of Solution
Explanation:
For an actively respiring cell, energy inherent in the concentration difference is
Conclusion:
The free energy of the difference in the concentration of hydrogen ions in external medium and matrix is
(e)
To suggest:
The way through which necessary energy is provided by ATP synthesis.
Introduction:
The protons are transported from the matrix to external medium. This creates a proton gradient across the inner mitochondrial membrane. The flow of proton from external matrix into matrix derives the synthesis of ATP.
(e)

Explanation of Solution
Explanation:
The concentration gradient is not alone enough for driving the synthesis of ATP. So, the sum of energy generated by charge separation and concentration gradient is used to drive the synthesis.
Conclusion:
The overall transmembrane electric potential is developed by concentration gradient and charge separation which together drive the synthesis of ATP.
Want to see more full solutions like this?
Chapter 19 Solutions
Lehninger Principles of Biochemistry (Instructor's)
- Do sensory neurons express ACE2 or only neurolipin-1 receptors for COVID19 virus particle binding?arrow_forwardExplain the process of CNS infiltration of COVID19 through sensory neurons from beginning to end, including processes like endocytosis, the different receptors/proteins that are involved, how they are transported and released, etc.,arrow_forwardH2C CH2 HC-COOO CH2 ܘHO-C-13c-O isocitrate C-S-COA H213c CH2 C-OO 13C-S-COA CH2 C-00 the label will not be present in succinyl CoA C-S-COA succinyl-CoAarrow_forward
- A culture of kidneys cells contains all intermediates of the citric acid cycle. It is treated with an irreversible inhibitor of malate dehydrogenase, and then infused withglucose. Fill in the following list to account for the number of energy molecules that are formed from that one molecule of glucose in this situation. (NTP = nucleotidetriphosphate, e.g., ATP or GTP)Net number of NTP:Net number of NADH:Net number of FADH2:arrow_forward16. Which one of the compounds below is the final product of the reaction sequence shown here? OH A B NaOH Zn/Hg aldol condensation heat aq. HCI acetone C 0 D Earrow_forward2. Which one of the following alkenes undergoes the least exothermic hydrogenation upon treatment with H₂/Pd? A B C D Earrow_forward
- 6. What is the IUPAC name of the following compound? A) (Z)-3,5,6-trimethyl-3,5-heptadiene B) (E)-2,3,5-trimethyl-1,4-heptadiene C) (E)-5-ethyl-2,3-dimethyl-1,5-hexadiene D) (Z)-5-ethyl-2,3-dimethyl-1,5-hexadiene E) (Z)-2,3,5-trimethyl-1,4-heptadienearrow_forwardConsider the reaction shown. CH2OH Ex. CH2 -OH CH2- Dihydroxyacetone phosphate glyceraldehyde 3-phosphate The standard free-energy change (AG) for this reaction is 7.53 kJ mol-¹. Calculate the free-energy change (AG) for this reaction at 298 K when [dihydroxyacetone phosphate] = 0.100 M and [glyceraldehyde 3-phosphate] = 0.00300 M. AG= kJ mol-1arrow_forwardIf the pH of gastric juice is 1.6, what is the amount of energy (AG) required for the transport of hydrogen ions from a cell (internal pH of 7.4) into the stomach lumen? Assume that the membrane potential across this membrane is -70.0 mV and the temperature is 37 °C. AG= kJ mol-1arrow_forward
- Consider the fatty acid structure shown. Which of the designations are accurate for this fatty acid? 17:2 (48.11) 18:2(A9.12) cis, cis-A8, A¹¹-octadecadienoate w-6 fatty acid 18:2(A6,9)arrow_forwardClassify the monosaccharides. H-C-OH H. H-C-OH H-C-OH CH₂OH H-C-OH H-C-OH H-C-OH CH₂OH CH₂OH CH₂OH CH₂OH D-erythrose D-ribose D-glyceraldehyde Dihydroxyacetone CH₂OH CH₂OH C=O Answer Bank CH₂OH C=0 HO C-H C=O H-C-OH H-C-OH pentose hexose tetrose H-C-OH H-C-OH H-C-OH aldose triose ketose CH₂OH CH₂OH CH₂OH D-erythrulose D-ribulose D-fructosearrow_forwardFatty acids are carboxylic acids with long hydrophobic tails. Draw the line-bond structure of cis-A9-hexadecenoate. Clearly show the cis-trans stereochemistry.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





