
(a)
Interpretation:
The capacitance of the membrane for the typical cell needs to be described.
Concept introduction:
The capacitance can be calculated as follows:
Here,
C − capacitance
e0 − dielectric constant of a vacuum
e0 e− dielectric constant of the membrane
A- Surface area of the membrane
I − membrane thickness
(b)
Interpretation:
The net charge required to maintain the observed membrane potential should be determined.
Concept introduction:
The observed Nernst potential across the cell wall is 0.085 V.
(c)
Interpretation:
Number of K+ ions must flow through the cell membrane to produce the membrane potential should be determined.
Concept introduction:
In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up a electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.
(d)
Interpretation:
Number of K+ ions in the typical cell should be determined.
Concept introduction:
In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up an electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.
(e)
Interpretation:
It should be shown that the fraction of the intracellular K+ ions transferred through the cell membrane to produce the membrane potential is so small and it does not change K+ concentration within the cell.
Concept introduction:
In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up an electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.
- For which of the following ionic compounds would you expect the smallest difference between its theoretical and experimental lattice enthalpies? (You may assume these all have the same unit cell structure.) Electronegativities: Ca (1.0), Fe (1.8), Mg (1.2), O (3.5), S (2.5), Zn (1.6) Group of answer choices ZnO MgS CaO FeSarrow_forwardIn the Born-Haber cycle for KCl crystal formation, what enthalpy component must be divided by two? Group of answer choices KCl(s) enthalpy of formation Ionization energy for K(g) K(s) sublimation enthalpy Cl2 bond dissociation enthalpyarrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); H₂O₂ / HO (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI хот Br Solvent Reagent(s) Solvent Reagent(s)arrow_forward
- What is the correct chemical equation for the lattice formation reaction for CaBr2? Group of answer choices Ca2+(g) + 2 Br−(g) → CaBr2(s) ½ Ca2+(g) + Br−(g) → ½ CaBr2(s) Ca(s) + Br2(l) → CaBr2(s) Ca(s) + 2 Br−(g) → CaBr2(s)arrow_forwardPLEASE ANSWER THE QUESTION!!!arrow_forward3. SYNTHESIS. Propose a sequence of synthetic steps (FGI) that convert the starting material (SM) into the Target molecule. For each FGI in your proposed synthesis, specify the reagents / conditions, and draw the product(s) of that FGI. DO NOT INCLUDE the FGI mxn in the answer you submit. If an FGI requires two reagent sets, specify the order in which the reagent sets are added, e.g., i) Hg(OAc)2 / H₂O; ii) NaBH4/MeOH. Indicate the stereochemistry (if any) of the products of each FGI. FGI 1. Me Starting Material Source of all carbons in the Target molecule (can use multiple copies) Me Me Target molecule + enantiomerarrow_forward
- curved arrows are used to illustate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction mechanism stepsarrow_forwardIf is was a very hot day, what would the aldol condensation product be? *see imagearrow_forwardPlease help me with number 1-3. Thank you so much.arrow_forward
- Draw the major product of this reaction ingnore the inorganic byproducts. 1. NaOCH2CH3 at 25 C 2. PhCH2Br (1 eq)arrow_forwardAt 90ºC the vapor pressure of ortho-xylene is 20 kPa and that of meta-xylene is 18 kPa. What is the composition of the vapor in equilibrium with a mixture in which the mole fraction of o-xylene is 0.60?arrow_forwardDraw the products of this reduction of a ketone with sodium borohydride. Use a dash or wedge bond to indicate the stereochemistry of substituents on asymmetric centers, where applicableIgnore any inorganic byproducts. 1) NaBH4 2) HCI/H2O Select to Drawarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning




