
(a)
Interpretation:
The capacitance of the membrane for the typical cell needs to be described.
Concept introduction:
The capacitance can be calculated as follows:
Here,
C − capacitance
e0 − dielectric constant of a vacuum
e0 e− dielectric constant of the membrane
A- Surface area of the membrane
I − membrane thickness
(b)
Interpretation:
The net charge required to maintain the observed membrane potential should be determined.
Concept introduction:
The observed Nernst potential across the cell wall is 0.085 V.
(c)
Interpretation:
Number of K+ ions must flow through the cell membrane to produce the membrane potential should be determined.
Concept introduction:
In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up a electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.
(d)
Interpretation:
Number of K+ ions in the typical cell should be determined.
Concept introduction:
In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up an electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.
(e)
Interpretation:
It should be shown that the fraction of the intracellular K+ ions transferred through the cell membrane to produce the membrane potential is so small and it does not change K+ concentration within the cell.
Concept introduction:
In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up an electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.
- N Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. NH O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic Garrow_forwardThe conjugate base of alkanes is called alkides. Correct?.arrow_forwardName these organic compounds: structure Br name CH3 CH3 ☐ ☐arrow_forward
- HH H-C H -C-H HH Draw the Skeletal Structures & H Name the molecules HH H H H H-C-C-C-C-C-C-H HHH HHH H H HHHHHHH H-C-C-C-C-C-C-C-C-C-H HHHHH H H H Harrow_forwarddont provide AI solution .... otherwise i will give you dislikearrow_forwardName these organic compounds: structure name CH3 CH3 ☐ F F CH3 ☐ O Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms ofarrow_forward
- Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. ZI NH Explanation Check O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic H O nonaromatic O aromatic O antiaromatic O nonaromatic ×arrow_forwardPart I. Draw the stepwise reaction mechanism of each product (a, b, c, d, e, f) HO HO OH НОН,С HO OH Sucrose HO CH₂OH H N N HO -H H -OH KMnO4, Heat H OH CH₂OH (d) Phenyl Osatriazole OH НОН,С HO HO + Glacial HOAC HO- HO CH₂OH OH HO Fructose (a) Glucose OH (b) H₂N HN (c) CuSO4-5H2O, ethanol H N N N HO ·H H OH H OH N CH₂OH OH (f) Phenyl Osazone H (e) Carboxy phenyl osatriazole Figure 2.1. Reaction Scheme for the Total Synthesis of Fine Chemicalsarrow_forwardWhich molecule is the most stable? Please explain.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning




