GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.
GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.
11th Edition
ISBN: 9780134566030
Author: Petrucci
Publisher: PEARSON
Question
Book Icon
Chapter 19, Problem 104FP
Interpretation Introduction

(a)

Interpretation:

The capacitance of the membrane for the typical cell needs to be described.

Concept introduction:

The capacitance can be calculated as follows:

C=ε0εAI

Here,

C − capacitance

e0 − dielectric constant of a vacuum

e0 e− dielectric constant of the membrane

A- Surface area of the membrane

I − membrane thickness

Interpretation Introduction

(b)

Interpretation:

The net charge required to maintain the observed membrane potential should be determined.

Concept introduction:

The observed Nernst potential across the cell wall is 0.085 V.

Interpretation Introduction

(c)

Interpretation:

Number of K+ ions must flow through the cell membrane to produce the membrane potential should be determined.

Concept introduction:

In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up a electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.

Interpretation Introduction

(d)

Interpretation:

Number of K+ ions in the typical cell should be determined.

Concept introduction:

In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up an electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.

Interpretation Introduction

(e)

Interpretation:

It should be shown that the fraction of the intracellular K+ ions transferred through the cell membrane to produce the membrane potential is so small and it does not change K+ concentration within the cell.

Concept introduction:

In most cells K+ concentration inside the cell is greater than the outside. Therefore, there is a stable concentration gradient across the cell membrane. If potassium channels open, K+ starts to diffuse to outside because of concentration gradient. As a result, excess of positive charge on the outside of the cell is built up and inside of the cell become more negative relative to outside. This sets up an electric potential difference across the membrane. This electric potential difference makes the remaining K+ to leave the cell. Finally, the electric potential difference across the membrane achieve a maximum level where the electric force driving K+ back to the cell is equal to the chemical force on K+ towards outside of the cell. At this point there is no net movement of K+.

Blurred answer
Students have asked these similar questions
7
Find the cell potential for the following:A) Al(s)| Al3+(0.1 M) || Fe2+(0.1 M) | Fe(s)B) Al(s)| Al3+(0.1 M) || Fe2+(0.01 M) | Fe(s)C) Al(s)| Al3+(0.01 M) || Fe2+(0.1 M) | Fe(s)
For the reaction; 4H+   +  PbO2  + 2 Fe 2+ →  2 Fe 3+ + Pb2+  +  2 H2O, the standard electrode potential is 0.69 V. Calculate the Gibbs Free-Energy that occur in the system if the product quotient of the reaction is 0.001.

Chapter 19 Solutions

GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.

Ch. 19 - Assume that all reactants and products are in...Ch. 19 - For the readuction half-cell reactions...Ch. 19 - Use date from Table 19.1 to predict whether, to...Ch. 19 - Prob. 14ECh. 19 - Dihromate ion (C2I72-) in acidic solution is a...Ch. 19 - Prob. 16ECh. 19 - Prob. 17ECh. 19 - Predict whether, to any significant extent. a....Ch. 19 - Write cell reactions for the electrochemical cells...Ch. 19 - Write the half-cell reactions and the balanced...Ch. 19 - Prob. 21ECh. 19 - In each of the following examples, sketch a...Ch. 19 - Use the data in Appendix D to calculate the...Ch. 19 - Write a cell diagram and call diagram the value of...Ch. 19 - Determine the values of tG for the following...Ch. 19 - Prob. 26ECh. 19 - Prob. 27ECh. 19 - Consider the voltaic cell below....Ch. 19 - Prob. 29ECh. 19 - Prob. 30ECh. 19 - Prob. 31ECh. 19 - The theoretical voltage of the aluminum-air...Ch. 19 - Prob. 33ECh. 19 - Prob. 34ECh. 19 - Prob. 35ECh. 19 - Prob. 36ECh. 19 - Prob. 37ECh. 19 - Use the Nernst equation and data from Appendix D...Ch. 19 - Prob. 39ECh. 19 - Prob. 40ECh. 19 - If [Zn2+] is maintained at 1.0 M, a. what the...Ch. 19 - Prob. 42ECh. 19 - Prob. 43ECh. 19 - Prob. 44ECh. 19 - Consider the voltaic cell Mg Mg(s)Mg2+ (satd Mg2(...Ch. 19 - Prob. 46ECh. 19 - For the voltaic cell,...Ch. 19 - For the voltaic cell,...Ch. 19 - Prob. 49ECh. 19 - Derive e balanced equation for the reaction...Ch. 19 - Prob. 51ECh. 19 - Prob. 52ECh. 19 - Prob. 53ECh. 19 - Prob. 54ECh. 19 - Prob. 55ECh. 19 - Prob. 56ECh. 19 - Prob. 57ECh. 19 - Prob. 58ECh. 19 - Refer to Figure 19-20, . end describe en words or...Ch. 19 - Prob. 60ECh. 19 - Natural gas transmission pipes are sometimes...Ch. 19 - Prob. 62ECh. 19 - How many gram of metal are deposited at the...Ch. 19 - A quantity of electric charge brings about the...Ch. 19 - Which of the blowing reactions occur spontaneously...Ch. 19 - An aqueous solution of K2SO4 , is electrolyzed by...Ch. 19 - Prob. 67ECh. 19 - Prob. 68ECh. 19 - Calculate the quantity indicated for each of the...Ch. 19 - Calculate the quantity indicated for each of the...Ch. 19 - Prob. 71ECh. 19 - Prob. 72ECh. 19 - Prob. 73ECh. 19 - A solution containing a mixture of a platinum(H)...Ch. 19 - Prob. 75IAECh. 19 - Suppose that a fully charged lead-acid battery...Ch. 19 - Prob. 77IAECh. 19 - For the half-cell reaction...Ch. 19 - Prob. 79IAECh. 19 - Prob. 80IAECh. 19 - Describe a laboratory experiment that you co...Ch. 19 - Prob. 82IAECh. 19 - Prob. 83IAECh. 19 - Prob. 84IAECh. 19 - Prob. 85IAECh. 19 - Prob. 86IAECh. 19 - Prob. 87IAECh. 19 - A common reference electrode consists of a silver...Ch. 19 - The electrodes in the following electrochemical...Ch. 19 - Prob. 90IAECh. 19 - Prob. 91IAECh. 19 - A solution is prepared by saturating 1000 mL of...Ch. 19 - Prob. 93IAECh. 19 - Prob. 94IAECh. 19 - Prob. 95IAECh. 19 - Prob. 96IAECh. 19 - Prob. 97IAECh. 19 - Prob. 98IAECh. 19 - Prob. 99IAECh. 19 - Prob. 100IAECh. 19 - Consider the following electrochemical cell:...Ch. 19 - Prob. 102FPCh. 19 - Prob. 103FPCh. 19 - Prob. 104FPCh. 19 - Prob. 105FPCh. 19 - Consider two cells involving two metals X and Y...Ch. 19 - Prob. 107FPCh. 19 - Prob. 108FPCh. 19 - Some electrochemical cells employ large biological...Ch. 19 - Prob. 110FPCh. 19 - Prob. 111SAECh. 19 - Prob. 112SAECh. 19 - Explain the important distinctions between each...Ch. 19 - Prob. 114SAECh. 19 - Prob. 115SAECh. 19 - Prob. 116SAECh. 19 - Prob. 117SAECh. 19 - The gas evolved at e anode when K2SO4(aq) is...Ch. 19 - Prob. 119SAECh. 19 - Prob. 120SAECh. 19 - Prob. 121SAECh. 19 - The following voltaic cell registers an...Ch. 19 - Prob. 123SAECh. 19 - For each of the following combination of...Ch. 19 - Prob. 125SAECh. 19 - Prob. 126SAECh. 19 - Prob. 127SAECh. 19 - Construct a concept map illustrating the...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning