
Nature of Mathematics (MindTap Course List)
13th Edition
ISBN: 9781133947257
Author: karl J. smith
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.4, Problem 5PS
To determine
To evaluate:
The area function for the function
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem 11 (a) A tank is discharging water through an orifice at a depth of T
meter below the surface of the water whose area is A m². The
following are the values of a for the corresponding values of A:
A 1.257 1.390
x 1.50 1.65
1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650
1.80 1.95 2.10 2.25 2.40 2.55 2.70
2.85
Using the formula
-3.0
(0.018)T =
dx.
calculate T, the time in seconds for the level of the water to drop
from 3.0 m to 1.5 m above the orifice.
(b) The velocity of a train which starts from rest is given by the fol-
lowing table, the time being reckoned in minutes from the start
and the speed in km/hour:
| † (minutes) |2|4 6 8 10 12
14 16 18 20
v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0
Estimate approximately the total distance ran in 20 minutes.
-
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
p-1
2
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
23
32
how come?
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
The set T is the subset of these residues exceeding
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p-1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
2
p-1
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
23
The set T is the subset of these residues exceeding
2°
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
how come?
Chapter 18 Solutions
Nature of Mathematics (MindTap Course List)
Ch. 18.1 - IN YOUR OWN WORDS What are the three main topics...Ch. 18.1 - Prob. 2PSCh. 18.1 - Prob. 3PSCh. 18.1 - IN YOUR OWN WORDS Zenos paradoxes remind us of an...Ch. 18.1 - Prob. 5PSCh. 18.1 - Consider the sequence 0.4, 0.44, 0.444, 0.4444,,...Ch. 18.1 - Consider the sequence 0.5,0.55,0.555,0.5555,, What...Ch. 18.1 - Consider the sequence 6, 6.6, 6.66, 6.666,, What...Ch. 18.1 - Prob. 9PSCh. 18.1 - Consider the sequence 0.27, 0.2727, 0.272727,,...
Ch. 18.1 - Prob. 11PSCh. 18.1 - Consider the sequence...Ch. 18.1 - Prob. 13PSCh. 18.1 - Prob. 14PSCh. 18.1 - Prob. 15PSCh. 18.1 - Prob. 16PSCh. 18.1 - Prob. 17PSCh. 18.1 - Prob. 18PSCh. 18.1 - Prob. 19PSCh. 18.1 - Prob. 20PSCh. 18.1 - Prob. 21PSCh. 18.1 - Prob. 22PSCh. 18.1 - In Problems 21-38, guess the requested limits....Ch. 18.1 - Prob. 24PSCh. 18.1 - Prob. 25PSCh. 18.1 - Prob. 26PSCh. 18.1 - In Problems 21-38, guess the requested limits....Ch. 18.1 - Prob. 28PSCh. 18.1 - Prob. 29PSCh. 18.1 - Prob. 30PSCh. 18.1 - Prob. 31PSCh. 18.1 - Prob. 32PSCh. 18.1 - Prob. 33PSCh. 18.1 - Prob. 34PSCh. 18.1 - Prob. 35PSCh. 18.1 - Prob. 36PSCh. 18.1 - Prob. 37PSCh. 18.1 - Prob. 38PSCh. 18.1 - Prob. 39PSCh. 18.1 - Prob. 40PSCh. 18.1 - Prob. 41PSCh. 18.1 - Prob. 42PSCh. 18.1 - Prob. 43PSCh. 18.1 - Prob. 44PSCh. 18.1 - Prob. 45PSCh. 18.1 - Prob. 46PSCh. 18.1 - Prob. 47PSCh. 18.1 - Prob. 48PSCh. 18.1 - Prob. 49PSCh. 18.1 - Prob. 50PSCh. 18.1 - Prob. 51PSCh. 18.1 - Prob. 52PSCh. 18.1 - Prob. 53PSCh. 18.1 - Prob. 54PSCh. 18.1 - Prob. 55PSCh. 18.1 - Prob. 56PSCh. 18.1 - Prob. 57PSCh. 18.1 - Prob. 58PSCh. 18.1 - Prob. 59PSCh. 18.1 - Prob. 60PSCh. 18.2 - IN YOUR OWN WORDS What do we mean by the limit of...Ch. 18.2 - Prob. 2PSCh. 18.2 - Prob. 3PSCh. 18.2 - Prob. 4PSCh. 18.2 - Prob. 5PSCh. 18.2 - Prob. 6PSCh. 18.2 - Prob. 7PSCh. 18.2 - Prob. 8PSCh. 18.2 - Prob. 9PSCh. 18.2 - Prob. 10PSCh. 18.2 - Prob. 11PSCh. 18.2 - Prob. 12PSCh. 18.2 - Prob. 13PSCh. 18.2 - Prob. 14PSCh. 18.2 - Prob. 15PSCh. 18.2 - Find each limit in Problems 11-18, if it exists....Ch. 18.2 - Prob. 17PSCh. 18.2 - Prob. 18PSCh. 18.2 - Prob. 19PSCh. 18.2 - Prob. 20PSCh. 18.2 - Prob. 21PSCh. 18.2 - Prob. 22PSCh. 18.2 - Prob. 23PSCh. 18.2 - Prob. 24PSCh. 18.2 - Prob. 25PSCh. 18.2 - Prob. 26PSCh. 18.2 - Prob. 27PSCh. 18.2 - Graph each sequence in the Problems 27-34 in one...Ch. 18.2 - Prob. 29PSCh. 18.2 - Graph each sequence in the Problems 27-34 in one...Ch. 18.2 - Prob. 31PSCh. 18.2 - Prob. 32PSCh. 18.2 - Prob. 33PSCh. 18.2 - Graph each sequence in Problems 27-34 in one...Ch. 18.2 - Prob. 35PSCh. 18.2 - Prob. 36PSCh. 18.2 - Prob. 37PSCh. 18.2 - Prob. 38PSCh. 18.2 - Prob. 39PSCh. 18.2 - Prob. 40PSCh. 18.2 - Prob. 41PSCh. 18.2 - Prob. 42PSCh. 18.2 - Prob. 43PSCh. 18.2 - Prob. 44PSCh. 18.2 - Prob. 45PSCh. 18.2 - Prob. 46PSCh. 18.2 - Find the limit if it exists as n for each of the...Ch. 18.2 - Find the limit if it exists as n for each of the...Ch. 18.2 - Prob. 49PSCh. 18.2 - Find the limit if it exists as n for each of the...Ch. 18.2 - Prob. 51PSCh. 18.2 - Prob. 52PSCh. 18.2 - Prob. 53PSCh. 18.2 - Prob. 54PSCh. 18.2 - Prob. 55PSCh. 18.2 - Prob. 56PSCh. 18.2 - Prob. 57PSCh. 18.2 - Prob. 58PSCh. 18.2 - Prob. 59PSCh. 18.2 - Prob. 60PSCh. 18.3 - Prob. 1PSCh. 18.3 - Prob. 2PSCh. 18.3 - Prob. 3PSCh. 18.3 - Prob. 4PSCh. 18.3 - Prob. 5PSCh. 18.3 - Prob. 6PSCh. 18.3 - Prob. 7PSCh. 18.3 - Prob. 8PSCh. 18.3 - Prob. 9PSCh. 18.3 - Prob. 10PSCh. 18.3 - Prob. 11PSCh. 18.3 - Prob. 12PSCh. 18.3 - Prob. 13PSCh. 18.3 - Prob. 14PSCh. 18.3 - Prob. 15PSCh. 18.3 - Prob. 16PSCh. 18.3 - Prob. 17PSCh. 18.3 - Prob. 18PSCh. 18.3 - Prob. 19PSCh. 18.3 - Prob. 20PSCh. 18.3 - Prob. 21PSCh. 18.3 - Prob. 22PSCh. 18.3 - Prob. 23PSCh. 18.3 - Prob. 24PSCh. 18.3 - Prob. 25PSCh. 18.3 - Prob. 26PSCh. 18.3 - Prob. 27PSCh. 18.3 - Prob. 28PSCh. 18.3 - Prob. 29PSCh. 18.3 - Prob. 30PSCh. 18.3 - Prob. 31PSCh. 18.3 - Prob. 32PSCh. 18.3 - Prob. 33PSCh. 18.3 - Prob. 34PSCh. 18.3 - Prob. 35PSCh. 18.3 - Prob. 36PSCh. 18.3 - Prob. 37PSCh. 18.3 - Prob. 38PSCh. 18.3 - Prob. 39PSCh. 18.3 - Prob. 40PSCh. 18.3 - Prob. 41PSCh. 18.3 - Prob. 42PSCh. 18.3 - Prob. 43PSCh. 18.3 - Prob. 44PSCh. 18.3 - Prob. 45PSCh. 18.3 - Prob. 46PSCh. 18.3 - Prob. 47PSCh. 18.3 - Prob. 48PSCh. 18.3 - Prob. 49PSCh. 18.3 - Prob. 50PSCh. 18.3 - Prob. 51PSCh. 18.3 - Prob. 52PSCh. 18.3 - Prob. 53PSCh. 18.3 - Prob. 54PSCh. 18.3 - Prob. 55PSCh. 18.3 - Prob. 56PSCh. 18.3 - Prob. 57PSCh. 18.3 - Prob. 58PSCh. 18.3 - Prob. 59PSCh. 18.3 - Prob. 60PSCh. 18.4 - Prob. 1PSCh. 18.4 - Prob. 2PSCh. 18.4 - Prob. 3PSCh. 18.4 - Prob. 4PSCh. 18.4 - Prob. 5PSCh. 18.4 - Prob. 6PSCh. 18.4 - Prob. 7PSCh. 18.4 - Prob. 8PSCh. 18.4 - Prob. 9PSCh. 18.4 - Prob. 10PSCh. 18.4 - Prob. 11PSCh. 18.4 - Prob. 12PSCh. 18.4 - Prob. 13PSCh. 18.4 - Prob. 14PSCh. 18.4 - Prob. 15PSCh. 18.4 - Prob. 16PSCh. 18.4 - Prob. 17PSCh. 18.4 - Prob. 18PSCh. 18.4 - Prob. 19PSCh. 18.4 - Prob. 20PSCh. 18.4 - Prob. 21PSCh. 18.4 - Prob. 22PSCh. 18.4 - Prob. 23PSCh. 18.4 - Prob. 24PSCh. 18.4 - Prob. 25PSCh. 18.4 - Prob. 26PSCh. 18.4 - Prob. 27PSCh. 18.4 - Prob. 28PSCh. 18.4 - Prob. 29PSCh. 18.4 - Prob. 30PSCh. 18.4 - Prob. 31PSCh. 18.4 - Prob. 32PSCh. 18.4 - Prob. 33PSCh. 18.4 - Prob. 34PSCh. 18.4 - Prob. 35PSCh. 18.4 - Prob. 36PSCh. 18.4 - Prob. 37PSCh. 18.4 - Prob. 38PSCh. 18.4 - Prob. 39PSCh. 18.4 - Prob. 40PSCh. 18.4 - Prob. 41PSCh. 18.4 - Prob. 42PSCh. 18.4 - Prob. 43PSCh. 18.4 - Prob. 44PSCh. 18.4 - Prob. 45PSCh. 18.4 - Prob. 46PSCh. 18.4 - Prob. 47PSCh. 18.4 - Prob. 48PSCh. 18.4 - Prob. 49PSCh. 18.4 - Prob. 50PSCh. 18.4 - Prob. 51PSCh. 18.4 - Prob. 52PSCh. 18.4 - Prob. 53PSCh. 18.4 - Prob. 54PSCh. 18.4 - Prob. 55PSCh. 18.4 - Prob. 56PSCh. 18.4 - Prob. 57PSCh. 18.4 - Prob. 58PSCh. 18.4 - Prob. 59PSCh. 18.4 - Prob. 60PSCh. 18.CR - Prob. 1CRCh. 18.CR - Prob. 2CRCh. 18.CR - Prob. 3CRCh. 18.CR - Prob. 4CRCh. 18.CR - Prob. 5CRCh. 18.CR - Prob. 6CRCh. 18.CR - Prob. 7CRCh. 18.CR - Prob. 8CRCh. 18.CR - Prob. 9CRCh. 18.CR - Prob. 10CRCh. 18.CR - Prob. 11CRCh. 18.CR - Prob. 12CRCh. 18.CR - Prob. 13CRCh. 18.CR - Prob. 14CRCh. 18.CR - Prob. 15CRCh. 18.CR - Prob. 16CRCh. 18.CR - Prob. 17CRCh. 18.CR - Prob. 18CRCh. 18.CR - Prob. 19CRCh. 18.CR - Prob. 20CR
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Shading a Venn diagram with 3 sets: Unions, intersections, and... The Venn diagram shows sets A, B, C, and the universal set U. Shade (CUA)' n B on the Venn diagram. U Explanation Check A- B Q Search 田arrow_forward3. A different 7-Eleven has a bank of slurpee fountain heads. Their available flavors are as follows: Mountain Dew, Mountain Dew Code Red, Grape, Pepsi and Mountain Dew Livewire. You fill five different cups full with each type of flavor. How many different ways can you arrange the cups in a line if exactly two Mountain Dew flavors are next to each other? 3.2.1arrow_forwardBusinessarrow_forward
- Please explain how come of X2(n).arrow_forwardNo chatgpt pls will upvotearrow_forwardFind all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forward
- https://www.hawkeslearning.com/Statistics/dbs2/datasets.htmlarrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY