OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
Chapter 18.4, Problem 18.7PSP
Interpretation Introduction
Interpretation:
Age of sealed sample of Scotch whiskey has to be estimated if it contains tritium content 0.60 time that of water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Learning Goal:
This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this:
35 Cl
17
In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is:
It is also correct to write symbols by leaving off the atomic number, as in the following form:
atomic number
mass number Symbol
35 Cl or
mass number Symbol
This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons
are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written.
Watch this video to review the format for written symbols.
In the following table each column…
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
Chapter 18 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 18.2 - Prob. 18.1PSPCh. 18.2 - Prob. 18.1ECh. 18.2 - Prob. 18.2PSPCh. 18.2 - Prob. 18.2ECh. 18.3 - Prob. 18.3PSPCh. 18.3 - Prob. 18.3ECh. 18.3 - Prob. 18.4CECh. 18.4 - Prob. 18.4PSPCh. 18.4 - Prob. 18.5ECh. 18.4 - Prob. 18.5PSP
Ch. 18.4 - Prob. 18.6PSPCh. 18.4 - Prob. 18.7PSPCh. 18.4 - Prob. 18.6ECh. 18.4 - Prob. 18.7CECh. 18.5 - Prob. 18.8ECh. 18.5 - Prob. 18.9CECh. 18.6 - Prob. 18.10ECh. 18.6 - Prob. 18.11ECh. 18.7 - Prob. 18.12ECh. 18.8 - Prob. 18.13ECh. 18.8 - Prob. 18.14ECh. 18.9 - Prob. 18.15ECh. 18 - Prob. 1SPCh. 18 - Prob. 2SPCh. 18 - Prob. 3SPCh. 18 - Prob. 4SPCh. 18 - Prob. 5SPCh. 18 - Prob. 1QRTCh. 18 - Prob. 2QRTCh. 18 - Prob. 3QRTCh. 18 - Prob. 4QRTCh. 18 - Prob. 5QRTCh. 18 - Prob. 6QRTCh. 18 - Prob. 7QRTCh. 18 - Prob. 8QRTCh. 18 - Prob. 9QRTCh. 18 - Complete the table.Ch. 18 - Prob. 11QRTCh. 18 - Prob. 12QRTCh. 18 - Prob. 13QRTCh. 18 - Prob. 14QRTCh. 18 - Prob. 15QRTCh. 18 - Prob. 16QRTCh. 18 - Prob. 17QRTCh. 18 - Prob. 18QRTCh. 18 - Prob. 19QRTCh. 18 - Prob. 20QRTCh. 18 - Prob. 21QRTCh. 18 - Prob. 22QRTCh. 18 - Prob. 23QRTCh. 18 - Prob. 24QRTCh. 18 - Prob. 25QRTCh. 18 - Prob. 26QRTCh. 18 - Prob. 27QRTCh. 18 - Prob. 28QRTCh. 18 - Prob. 29QRTCh. 18 - Prob. 30QRTCh. 18 - Prob. 31QRTCh. 18 - Prob. 32QRTCh. 18 - Prob. 33QRTCh. 18 - Prob. 34QRTCh. 18 - Prob. 35QRTCh. 18 - Prob. 36QRTCh. 18 - Prob. 37QRTCh. 18 - Prob. 38QRTCh. 18 - Prob. 39QRTCh. 18 - Prob. 40QRTCh. 18 - Prob. 41QRTCh. 18 - Prob. 42QRTCh. 18 - Prob. 43QRTCh. 18 - Prob. 44QRTCh. 18 - Prob. 45QRTCh. 18 - Prob. 46QRTCh. 18 - Prob. 47QRTCh. 18 - Prob. 48QRTCh. 18 - Prob. 49QRTCh. 18 - Prob. 50QRTCh. 18 - Prob. 51QRTCh. 18 - Prob. 52QRTCh. 18 - Prob. 53QRTCh. 18 - Prob. 54QRTCh. 18 - Prob. 55QRTCh. 18 - Prob. 56QRTCh. 18 - Prob. 57QRTCh. 18 - Prob. 58QRTCh. 18 - Prob. 59QRTCh. 18 - Prob. 60QRTCh. 18 - Prob. 61QRTCh. 18 - Prob. 62QRTCh. 18 - Prob. 63QRTCh. 18 - Prob. 64QRTCh. 18 - Prob. 65QRTCh. 18 - Prob. 66QRTCh. 18 - Prob. 67QRTCh. 18 - Prob. 68QRTCh. 18 - Prob. 69QRTCh. 18 - Prob. 70QRTCh. 18 - Prob. 71QRTCh. 18 - Prob. 72QRTCh. 18 - Prob. 73QRTCh. 18 - Prob. 74QRTCh. 18 - Prob. 75QRTCh. 18 - Prob. 76QRTCh. 18 - Prob. 77QRTCh. 18 - Prob. 78QRTCh. 18 - Prob. 79QRTCh. 18 - Prob. 80QRTCh. 18 - Prob. 81QRTCh. 18 - Prob. 82QRTCh. 18 - Prob. 83QRTCh. 18 - Prob. 84QRTCh. 18 - Prob. 85QRTCh. 18 - Prob. 86QRTCh. 18 - Prob. 87QRTCh. 18 - Prob. 88QRTCh. 18 - Prob. 89QRTCh. 18 - Prob. 91QRTCh. 18 - Prob. 92QRTCh. 18 - Prob. 93QRTCh. 18 - Prob. 94QRTCh. 18 - Prob. 95QRTCh. 18 - Prob. 96QRTCh. 18 - Prob. 18.ACPCh. 18 - Prob. 18.BCPCh. 18 - Prob. 18.CCPCh. 18 - Prob. 18.DCPCh. 18 - Prob. 18.ECP
Knowledge Booster
Similar questions
- Please correct answer and don't used hand raitingarrow_forwardneed help please and thanks dont understand a-b Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal energy Divide the…arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardCan you tell me if my answers are correctarrow_forwardBunsenite (NiO) crystallizes like common salt (NaCl), with a lattice parameter a = 4.177 Å. A sample of this mineral that has Schottky defects that are not supposed to decrease the volume of the material has a density of 6.67 g/cm3. What percentage of NiO molecules is missing? (Data: atomic weight of Ni: 58.7; atomic weight of O: 16).arrow_forward
- A sample of aluminum (face-centered cubic - FCC) has a density of 2.695 mg/m3 and a lattice parameter of 4.04958 Å. Calculate the fraction of vacancies in the structure. (Atomic weight of aluminum: 26.981).arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardWhich of the following species is a valid resonance structure of A? Use curved arrows to show how A is converted to any valid resonance structure. When a compound is not a valid resonance structurc of A, explain why not. Provide steps and tips on what to look for to understand how to solve and apply to other problems.arrow_forwardN IZ Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 HN Molecule 3 Х HN www. Molecule 4 Molecule 5 Molecule 6 none of the above NH NH Garrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning