(a)
Interpretation:
From the given set of reactions spontaneous reactions have to be identified.
To identify: whether the given reaction is spontaneous or non-spontaneous reaction
(b)
Interpretation:
From the given set of reactions spontaneous reactions have to be identified.
To identify: whether the given reaction is spontaneous or non-spontaneous reaction
(c)
Interpretation:
From the given set of reactions spontaneous reactions have to be identified.
To identify: whether the given reaction is spontaneous or non-spontaneous reaction
(d)
Interpretation:
From the given set of reactions spontaneous reactions have to be identified.
To identify: whether the given reaction is spontaneous or non-spontaneous reaction
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- Decide whether the following processes will be spontaneous, and why. The why can be general, not specific. a Ice melting at 5C b Ice melting at +5C c KBr(s) dissolving in water d An unplugged refrigerator getting cold e A leaf falling from a tree to the ground f The reaction Li(s)+12F2(g)LiF(s) g The reaction H2O(l)H2(g)+12O2(g)arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forwardThermodynamics provides a way to interpret everyday occurrences. If you live in northern climates, one common experience is that during early winter, snow falls but then melts when it hits the ground. Both the formation and the melting happen spontaneously. How can thermodynamics explain both of these seemingly opposed events?arrow_forward
- Which of the following are spontaneous processes? a A cube of sugar dissolves in a cup of hot tea. b A rusty crowbar turns shiny. c Butane from a lighter burns in air. d A clock pendulum, initially stopped, begins swinging. e Hydrogen and oxygen gases bubble out from a glass of pure water.arrow_forwardIdentify each of the processes listed as spontaneous or non-spontaneous. For each non spontaneous process, describe the corresponding spontaneous process in the opposite direction. (a) Oxygen molecules dissociate to form oxygen atoms. (b) A tray of water is placed in the sun on a warm day and freezes. (c) A solution of salt water forms a layer of acid on top of a layer of base. (d) Silver nitrate is added to a solution of sodium chloride and a precipitate forms. (e) Sulfuric acid sitting in a beaker turns into water by giving off gaseous SO3.arrow_forwardConsider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forward
- Consider the reaction of 1 mol H2(g) at 25C and 1 atm with 1 mol Br2(l) at the same temperature and pressure to produce gaseous HBr at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forwardWhat happens to the entropy of the universe during a spontaneous process?arrow_forwardThe molecular scale pictures below show snapshots of a strong acid at three different instants after it is added to water. Place the three pictures in the correct order so that they show the progress of the spontaneous process that takes place as the acid dissolves in the water. Explain your answer in terms of entropyarrow_forward
- For each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forwardDefine the following: a. spontaneous process b. entropy c. positional probability d. system e. surroundings f. universearrow_forwardConsider the decomposition of red mercury(II) oxide under standard state conditions.. 2HgO(s,red)2Hg(l)+O2(g) (a) Is the decomposition spontaneous under standard state conditions? (b) Above what temperature does the reaction become spontaneous?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning