Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9781259639272
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18.3, Problem 18.142P

(a)

To determine

The rate of precession ϕ˙0 of the sphere in its initial position.

(a)

Expert Solution
Check Mark

Answer to Problem 18.142P

The rate of precession ϕ˙0 of the sphere in its initial position is 15g11a_.

Explanation of Solution

Given information:

The position of the sphere β is zero.

The largest value of β in the ensuing motion is 30°.

Calculation:

Conservation of angular momentum about the Z and z axes:

The only external forces are acting in homogenous sphere is weight of the sphere and reaction at A. Hence, the angular momentum is conserved about the Z and z axes.

Choose the principal axes Axyz with taking y horizontal and pointing into the paper.

Write the expression for the angular velocity ω.

ω=ϕ˙cosβi+β˙j+(ψ˙ϕ˙sinβ)k

The principal moment of inertia are  Ix=Iy=m(25a2+(2a)2) and Iz=25ma2.

Draw the Free body diagram of homogeneous sphere and the forces acting on it as in Figure (1).

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 18.3, Problem 18.142P

Write the expression for the angular momentum about point A.

HA=Ixωxi+Iyωyj+Izωzk

Substitute m(25a2+(2a)2) for Ix, ϕ˙cosβ for ωx, m(25a2+(2a)2) for Iy, β˙ for ωy, , 25ma2 for Iz, and (ψ˙ϕ˙sinβ) for ωz.

HA=m(25a2+(2a)2)(ϕ˙cosβ)i+m(25a2+(2a)2)β˙j+25ma2(ψ˙ϕ˙sinβ)k=225ma2ϕ˙cosβi+225ma2β˙j+25ma2(ψ˙ϕ˙sinβ)k

Consider Hz=constant or HAK=constant.

The scalar value of iK=cosβ, jK=0, and kK=sinβ.

Determine the conservation of angular momentum about fixed Z axis HAK.

HAK=constant

Substitute 225ma2ϕ˙cosβi+225ma2βj+25ma2(ψ˙ϕ˙sinβ)k for HA, cosβ for (iK), 0 for (jK), and cosβ for (kK).

{225ma2ϕ˙cosβ(iK)+225ma2β˙(jK)+25ma2(ψ˙ϕ˙sinβ)(kK)}=constant{225ma2ϕ˙cosβ(cosβ)+225ma2β˙(0)+25ma2(ψ˙ϕ˙sinβ)(sinβ)}=constant{225ma2ϕ˙cosβ(cosβ)+25ma2(ψ˙ϕ˙sinβ)(sinβ)}=constant (1)

Substitute ϕ˙0 for ϕ˙, 0 for ψ˙, and 0 for β in Equation (1).

{225ma2ϕ˙0cos0(cos0)+25ma2(0ϕ˙0sin0)(sin0)}=constantconstant=225ma2ϕ˙0

Substitute 225ma2ϕ˙0 for constant in Equation (1).

225ma2ϕ˙cosβ(cosβ)+25ma2(ψ˙ϕ˙sinβ)(sinβ)=225ma2ϕ˙025ma2[11ϕ˙cos2β(ψ˙ϕ˙sinβ)sinβ]=25×11ϕ˙011ϕ˙cos2β(ψ˙ϕ˙sinβ)sinβ=11ϕ˙0 (2)

Determine the constant value using the angular momentum along z–axis.

Hz=constantIzωz=constant

Substitute 25ma2 for Iz and (ψ˙ϕ˙sinβ) for ωz.

25ma2(ψ˙ϕ˙sinβ)=constant (3).

Substitute ϕ˙0 for ϕ˙, 0 for ψ˙, and 0 for β in Equation (3).

25ma2(0ϕ˙0sin(0))=constantconstant=0

Substitute 0 for constant in Equation (3).

25ma2(ψ˙ϕ˙sinβ)=0ψ˙ϕ˙sinβ=0

Substitute 0 for (ψ˙ϕ˙sinβ) in Equation (2).

11ϕ˙cos2β(ψ˙ϕ˙sinβ)sinβ=11ϕ˙011ϕ˙cos2β0(sinβ)=11ϕ˙0ϕ˙=11ϕ˙011cos2βϕ˙=ϕ˙0sec2β

Conservation of energy:

Determine the value of kinetic energy T.

T=12(Ixωx2+Iyωy2+Izωz2)

Substitute m(25a2+(2a)2) for Ix, ϕ˙cosβ for ωx, m(25a2+(2a)2) for Iy, β˙ for ωy, , 25ma2 for Iz, and (ψ˙ϕ˙sinβ) for ωz.

T={12(m(25a2+(2a)2)(ϕ˙cosβ)2+m(25a2+(2a)2)(β˙)2+25ma2(ψ˙ϕ˙sinβ)2)}=12(225ma2ϕ˙2cos2β+225ma2(β˙)2+25ma2(ψ˙ϕ˙sinβ)2)

Select the datum at β=0.

Determine the value of conservation of energy using the relation.

T+V=constant

Here, E is the constant and V is the potential energy.

Substitute 12(225ma2ϕ˙2cos2β+225ma2(β)2+25ma2(ψ˙ϕ˙sinβ)2) for T and 2mgasinβ for V.

{12(225ma2ϕ˙2cos2β+225ma2(β˙)2+25ma2(ψ˙ϕ˙sinβ)2)2mgasinβ}=constant (4)

Substitute ϕ˙0 for ϕ˙, 0 for β, 0 for β˙, and 0 for ψ˙ in Equation (4).

{12(225ma2ϕ˙02cos20+225ma2(0)2+25ma2(0ϕ˙0sin0)2)2mgasin0}=constantconstant=115ma2ϕ˙02

Substitute 115ma2ϕ˙02 for constant in Equation (4).

{12(225ma2ϕ˙2cos2β+225ma2(β˙)2+25ma2(ψ˙ϕ˙sinβ)2)2mgasinβ}=115ma2ϕ˙0212×25ma2((11ϕ˙2cos2β+11(β˙)2+(ψ˙ϕ˙sinβ)2)10gasinβ)=115ma2ϕ˙02((11ϕ˙2cos2β+11(β˙)2+(ψ˙ϕ˙sinβ)2)10gasinβ)=11ϕ˙02 (5)

Consider β˙=0 for the maximum value of β.

Substitute ϕ˙0sec2β for ϕ˙, 0 for (ψ˙ϕ˙sinβ), and 0 for β˙ in Equation (5).

11(ϕ˙0sec2β)2cos2β+11(0)210gasinβ=11ϕ˙0211ϕ˙02sec4β×1sec2β10gasinβ=11ϕ˙0211ϕ˙02sec2β11ϕ˙02=10gasinβ11ϕ˙02(1cos2βcos2β)=10gasinβ

ϕ˙02(sin2βcos2β)=1011gasinβϕ˙02=1011gasinβ×cos2βsin2βϕ˙02=1011gacos2βsinβ (6)

Substitute 30° for β in Equation (6).

ϕ˙02=1011gacos230°sin30°ϕ˙0=15g11a(43)

Therefore, the rate of precession ϕ˙0 of the sphere in its initial position is 15g11a_.

(b)

To determine

The rates of precession ϕ˙ and the spin ψ˙.

(b)

Expert Solution
Check Mark

Answer to Problem 18.142P

The rate of precession ϕ˙ is 220g33a_.

The rate of spin ψ˙ is 20g33a_.

Explanation of Solution

Given information:

The position of the sphere β is zero.

The largest value of β in the ensuing motion is 30°.

Calculation:

Determine the rate of precession ϕ˙ using the relation.

ϕ˙=ϕ˙0sec2β

Substitute 15g11a for ϕ˙0 and 30° for β.

ϕ˙=15g11asec230°=15g11a×1cos230°=15g11a43=15×16g11×9a=220g33a

Therefore, the rate of precession ϕ˙ is 220g33a_.

Determine the rate of spin ψ˙ using the relation.

ψ˙ϕ˙0sinβ=0

Substitute 220g33a for ϕ˙ and 30° for β.

ψ˙220g33asin30°=0ψ˙=20g33a

The rate of spin ψ˙ is 20g33a_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1-The work done by weight is ? 2-Polar moment of inertia about B is  ? 3-angular velocity at position 2 ?
7. (a) A uniform prismatic rod of length I and mass m is placed in a vertical position with one end on a smooth horizontal floor. It is then let go, and it falls to the floor from rest in the vertical position. Assuming that the rod never loses contact with the floor, derive an expression for its angular velocity at any position as shown in Figure 7(a). (b) ( =0 Figure 7(a) Determine the height h at which the billiard ball of radius r must be struck so that no frictional force develops between the ball and the table at 4 as shown in Figure 7(b). Assume that the cue only exerts a horizontal force P on the ball. Take IG of the ball equal to (2/5)mr², where m is the mass of the ball. Figure 7(b)
A 1300-kg sports car has a center of gravity G located a distance h above a line connecting the front and rear axles. The car is suspended from cables that are attached to the front and rear axles as shown. Knowing that the periods of oscillation are 4.04 s when L = 4 m and 3.54 s when L = 3 m, determine h and the centroidal radius of gyration.

Chapter 18 Solutions

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics

Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Prob. 18.43PCh. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Prob. 18.57PCh. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - 18.61 Determine the rate of change of the angular...Ch. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - Prob. 18.157RPCh. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY