
Concept explainers
(a)
The couple
(a)

Answer to Problem 18.102P
The couple
Explanation of Solution
Given information:
The weight (W) of the disk is 6 lb.
The radius (r) of the disk is 3 in..
The angular velocity
The angular velocity of shaft CBD and arm AB
The horizontal distance (c) between the center of rod CBD and center of disk is 5 in..
The vertical distance (b) between the center of rod CBD and center of disk is 4 in..
The couple
The time (t) of couple applied is 3 s.
Calculation:
Find the mass (m) of the disk using the equation:
Here, g is the acceleration due to gravity.
Substitute 6 lb for W and
Write the equation of vector form of angular velocity
The angular velocity
Write the equation of angular velocity of disk A
Write the equation of angular velocity
Find the equation of angular velocity
Substitute 0 for
Find the equation of angular momentum about A
Substitute 0 for
Find the rate of change of angular momentum
Here,
Write the equation of the rate of change of angular momentum about A
Substitute
Write the equation mass moment of inertia
Write the equation mass moment of inertia
Write the equation of velocity of the mass center A of the disk.
Write the equation of acceleration of the mass center A of the disk.
Substitute
Find the position vector of D with respect to A.
Substitute 5 in. for c and 4 in. for b.
Find the rate of change of angular momentum about D
Substitute
Substitute
Sketch the free body diagram and kinetic diagram of the system as shown in Figure (1).
Refer Figure (1),
Apply Newton’s law of motion.
Substitute
Equate i-vector coefficients in Equation (3).
Equate k-vector coefficients in Equation (3).
Take moment about D.
Here,
The moment at D is equal to the rate of change of angular momentum at D.
Equate Equation (3) and (7).
Find the angular acceleration
Substitute 0 for
Find the couple
Substitute 3 in. for r, 5 in. for c,
Thus, the couple
(b)
The dynamic reaction at C and D after the couple has been removed.
(b)

Answer to Problem 18.102P
The dynamic reaction at C after the couple has been removed is
The dynamic reaction at D after the couple has been removed is
Explanation of Solution
Calculation:
After the 3 s, the couple
Find the component of dynamic reaction at C
Substitute 4 in. for b, 3 in. for r, 5 in. for c, 18 rad/s for
Find the component of dynamic reaction at D
Substitute 4 in. for b, 3 in. for r, 5 in. for c, 18 rad/s for
Find the component of dynamic reaction at C
Substitute 4 in. for b, 3 in. for r, 60 rad/s for
Find the component of dynamic reaction at D
Substitute 4 in. for b, 3 in. for r, 60 rad/s for
Find the dynamic reactions at C using the equation:
Substitute
Thus, the dynamic reactions at C after the couple has been removed is
Find the dynamic reactions at D using the equation:
Substitute
Thus, the dynamic reactions at D after the couple has been removed is
Want to see more full solutions like this?
Chapter 18 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- handwritten solutions only, please!arrow_forwardOn from the equation: 2 u = C₁ + C₂ Y + Czy + Cu y³ Find C₁, C₂, C3 and Cy Using these following Cases : (a) 4=0 at y=0 (b) U = U∞ at y = 8 du (c) at Y = S ду --y. ди = 0 at y = 0 бугarrow_forwardI need help with a MATLAB code. I am trying to solve this question. Based on the Mars powered landing scenariosolve Eq. (14) via convex programming. Report the consumed fuel, and discuss the results with relevant plots. I am using the following MATLAB code and getting an error. I tried to fix the error and I get another one saying something about log and exp not being convex. Can you help fix my code and make sure it works. The error is CVX Warning: Models involving "log" or other functions in the log, exp, and entropy family are solved using an experimental successive approximation method. This method is slower and less reliable than the method CVX employs for other models. Please see the section of the user's guide entitled The successive approximation method for more details about the approach, and for instructions on how to suppress this warning message in the future.Error using .* (line 173)Disciplined convex programming error: Cannot perform the operation:…arrow_forward
- Note: please use integration for parabolic volume (Vp) of the fluid displaced due to rotation. (Make it simpe as possible to follow in the working out). Provide a clear, step-by-step simplified handwritten solution (with no extra explanations) that is entirely produced by hand without any AI help. I require an expert-level answer, and I will assess it based on the quality and accuracy of the work, referring to the attached image for additional guidance. Make sure every detail is carefully verified for correctness before you submit. Thanks!.arrow_forwardNote: use centroid method please Provide a clear, step-by-step simplified handwritten solution (with no extra explanations) that is entirely produced by hand without any AI help. I require an expert-level answer, and I will assess it based on the quality and accuracy of the work, referring to the attached image for additional guidance. Make sure every detail is carefully verified for correctness before you submit. Thanks!.arrow_forwardCalculate the cutting time for a 4 in length of cut, given that the feed rate is 0.030 ipr at a speed of 90 fpm.arrow_forward
- for the values: M1=0.41m, M2=1.8m, M3=0.56m, please account for these in the equations. also please ensure that the final answer is the flow rate in litres per second for each part. please use bernoullis equation where needed if an empirical solutions i srequired. also The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the valuearrow_forwardSolve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forward
- Problem 2: An athlete, starting from rest, pulls handle A to the left with a constant force of P = 150 [N]. Knowing that after the handle A has been pulled 0.5 [m], its velocity is 5 [m/s] to the left, determine: a) A position constraint equation using the given coordinate system. b) An acceleration constraint equation. c) The acceleration of A using kinematics equations. d) The acceleration of B using your constraint equation. e) How much weight (magnitude) the athlete is lifting in pounds using Newton's 2nd Law. You must draw a FBD and KD of the circled assembly, assuming the pulleys are massless. Note: 1 [lbf] = 4.448 [N]. ХА Увarrow_forwardProblem 1: For each of the following images, draw a complete FBD and KD for the specified objects. Then write the equations of motion using variables for all unknowns (e.g., mass, friction coefficient, etc.), plugging in kinematic expressions and simplifying where appropriate. Assume motion in all cases, so any friction would be kinetic. M (a) Blocks A & B (Be careful with acceleration of B relative to accelerating block A) 30° (b) Block A being pulled up my motor M (use rotated rectangular coordinate system) 20° (c) Ball at C, top of swing (use path coordinates) (d) Parasailer/Person (use polar coordinates)arrow_forwardwhere M1=0.41m, M2=1.8m, M3=0.56m, please use bernoulis equation where necessary and The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the value.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





