(a)
Interpretation:
The oxidation state of all atoms in
Concept Introduction:
The
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form
Therefore, transfer of electrons refers to the oxidation state.
(b)
Interpretation:
The oxidation state of all atoms in
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
(c)
Interpretation:
The oxidation state of all atoms in
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
(d)
Interpretation:
The oxidation state of all atoms in
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
(d)
Interpretation:
The oxidation state of all atoms in
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.

Want to see the full answer?
Check out a sample textbook solution
Chapter 18 Solutions
INTRODUCTORY CHEMISTRY
- Rank the compounds below from lowest to highest melting point.arrow_forward18 Question (1 point) Draw the line structure form of the given partially condensed structure in the box provided. :ÖH HC HC H2 ΙΩ Н2 CH2 CH3 CH3 partially condensed formarrow_forwardsomeone else has already submitted the same question on here and it was the incorrect answer.arrow_forward
- The reaction: 2NO2(g) ⇌ N2O4(g) is an exothermic reaction, ΔH=-58.0 kJ/molrxn at 0°C the KP is 58.If the initial partial pressures of both NO2(g) and N2O4(g) are 2.00 atm:A) Is the reaction at equilibrium? If not, what is the value of Q? B) Which direction will the reaction go to reach equilibrium? C) Use an ICE table to find the equilibrium pressures.arrow_forwardThe dissociation of the weak acid, nitrous acid, HNO2, takes place according to the reaction: HNO2 (aq) ⇌ H+(aq) + NO2–(aq) K=7.2 X 10-4 When 1.00 mole of HNO2 is added to 1.00 L of water, the H+ concentration at equilibrium is 0.0265 M.A) Calculate the value of Q if 1.00 L of water is added? B) How will reaction shift if 1.00 L of water is added?arrow_forwardSuppose a certain copolymer elastomeric material “styrene-butadiene rubber”) contains styrene ("S") monomers –(C8H8)– and butadiene ("B") monomers –(C4H6)– and that their numerical ratio S:B = 1:8. What is the mass ratio mS:mB of the two monomers in the material? What is the molecular mass M of a macromolecule of this copolymer with degree of polymerization n = 60,000? Data: AC = 12.01 u, AH = 1.008 u.arrow_forward
- Lab Questions from Lab: Gravimetric Determination of Calcium as CaC2O4•H2O What is the purpose of the methyl red indicator? Why does a color change to yellow tell you that the reaction is complete? Why is the precipitate rinsed with ice-cold water in step 4? Why not room temperature or hot water? Why is it important that the funnels be placed in a desiccator before weighing (steps 1 and 5)?arrow_forwardWhat mass of ethylene glycol, HOCH2CH2OH, Mustbe added to 5.50 kg of water to antifreeze that would work for the car radiator to -10.0 degrees celcius? MM (g/mol): 62.07arrow_forwardWhat is the molarity of a 0.393 m glucose solution if its density is 1.16 g/mL? MM glucose 180.2 g/molarrow_forward
- The rate constant for the decay of a radioactive element is 2.28 × 10⁻³ day⁻¹. What is the half-life of this element in days?arrow_forwardHandwritten pleasearrow_forwardChoose the best reagents to complete the following reaction. i H A B 1. CH3CH2Na 2. H3O+ 1. CH3CH2MgBr 2. H3O+ 1. CH3MgBr Q C 2. H3O+ 1. H3O+ D 2. CH3MgBr 00 OH Q E CH³MgBrarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co