
Concept explainers
(a)
The velocity of the mass centre

Answer to Problem 18.28P
The velocity of the mass centre
Explanation of Solution
Given information:
The mass of the each plate is
Write the expression for moment of the inertia about the x- axis.
Here, the distance of mass centre from the circular plate is
Write the expression for moment of the inertia about the y- axis.
Write the expression for moment of the inertia about the z- axis.
Write expression for the product moment of inertia about the plane
Write expression for the product moment of inertia about the plane
Write expression for the product moment of inertia about the plane
The figure below shows the effective kinetic diagram of the system.
Figure-(1)
Write the expression for the impulse about point
Write the expression for the velocity of the mass centre of the system.
Here, the velocity of the mass centre in x- direction is
Calculation:
For upper plate:
Substitute
Substitute
Substitute
Substitute
For lower plate:
Substitute
Substitute
Substitute
Substitute
For assembly the inertia of the moment of both the plate is added.
Substitute
Compare coefficient of
Compare coefficient of
Compare coefficient of
Substitute
Conclusion:
The velocity of the mass centre
(b)
The angular velocity of the assembly.

Answer to Problem 18.28P
The angular velocity of the assembly is
Explanation of Solution
Write the expression for the moments about centre point
Here, the angular momentum about x- direction is
Write the expression for the angular momentum in x- direction.
Write the expression for the angular momentum in y- direction.
Write the expression for the angular momentum in z- direction.
Write the expression for the angular velocity of the assembly.
Calculation:
Substitute
Compare coefficient of
Compare coefficient of
Compare coefficient of
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The angular velocity of the assembly is
Want to see more full solutions like this?
Chapter 18 Solutions
Vector Mechanics for Engineers: Dynamics
- please solve this problems follow what the question are asking to do please show me step by steparrow_forwardplease first write the line action find the forces and them solve the problem step by steparrow_forwardplease solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forward
- please help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forward
- plese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forwardplease help me to solve this problems first write the line of action and them find the forces {fx=0: fy=0: mz=0: and them draw the shear and bending moment diagram. please explain step by steparrow_forwardplease solve this problem step by step like human and give correct answer step by steparrow_forward
- PROBLEM 11: Determine the force, P, that must be exerted on the handles of the bolt cutter. (A) 7.5 N (B) 30.0 N (C) 52.5 N (D) 300 N (E) 325 N .B X 3 cm E 40 cm cm F = 1000 N 10 cm 3 cm boltarrow_forwardUsing the moment-area theorems, determine a) the rotation at A, b) the deflection at L/2, c) the deflection at L/4. (Hint: Use symmetry for Part a (θA= - θB, or θC=0), Use the rotation at A for Parts b and c. Note that all deformations in the scope of our topics are small deformation and for small θ, sinθ=θ).arrow_forwardDistilled water is being cooled by a 20% propylene glycol solution in a 1-1/U counter flow plate and frame heat exchanger. The water enters the heat exchanger at 50°F at a flow rate of 86,000 lbm/h. For safety reasons, the water outlet temperature should never be colder than 35°F. The propylene glycol solution enters the heat exchanger at 28°F with a flow rate of 73,000 lbm/h. The port distances on the heat exchanger are Lv = 35 in and Lh = 18 in. The plate width is Lw = 21.5 2 in. The plate thickness is 0.04 in with a plate pitch of 0.12 in. The chevron angle is 30° and the plate enlargement factor is 1.17. All ports have a 2 in diameter. The fouling factor of the propylene glycol solution can be estimated as 2 ×10−5 h-ft2-°F/Btu. a. Determine the maximum number of plates the heat exchanger can have while ensuring that the water outlet temperature never drops below 35°F. b. Determine the thermal and hydraulic performance of the heat exchanger with the specified number of plates.…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





