Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18.1, Problem 18.1QQ
The energy input to an engine is 3.00 times greater than the work it performs. (i) What is its thermal efficiency? (a) 3.00 (b) 1.00 (c) 0.333 (d) impossible to determine (ii) What fraction of the energy input is expelled to the cold reservoir? (a) 0.333 (b) 0.667 (c) 1.00 (d) impossible to determine
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. (a) How much heat transfer occurs to the environment by an electrical power station that uses
1.25-1014 J of heat transfer into the engine with an efficiency of 41%?
|QC| =
(b) What is the ratio of heat transfer to the environment to work output?
lQd
W
(c) How much work is done?
W=
(a) What is the best coefficient of performance for a refrigerator that cools an environment at -28.5°C and has heat transfer to another
environment at 46.5°C?
3.262
(b) How much work in joules must be done for a heat transfer of 4186 kJ from the cold environment?
1283.26
(c) What is the cost (in cents) of doing this if the work costs 15.0 cents per 3.60 x 106 J (a kilowatt-hour)?
5.35
(d) How many k) of heat transfer occurs into the warm environment?
5469.26
kJ
(e) Discuss what type of refrigerator might operate between these temperatures.
The inside of the refrigerator (actually freezer) is at (-28.5 °C) so this
probably is a commercial meat packing freezer. The exhaust is generally
vented to the outside so as to not heat the building too much.
5. (a) How much heat transfer occurs to the environment by an electrical power station that uses1.25 × 10^14 J of heat transfer into the engine with an efficiency of 42.0%? (b) What is the ratioof heat transfer to the environment to work output? (c) How much work is done?
Chapter 18 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 18.1 - The energy input to an engine is 3.00 times...Ch. 18.3 - Prob. 18.2QQCh. 18.4 - Prob. 18.3QQCh. 18.6 - (a) Suppose you select four cards at random from a...Ch. 18.7 - Which of the following is true for the entropy...Ch. 18.7 - An ideal gas is taken from an initial temperature...Ch. 18.8 - True or False: The entropy change in an adiabatic...Ch. 18 - Prob. 1OQCh. 18 - Prob. 2OQCh. 18 - A refrigerator has 18.0 kJ of work done on it...
Ch. 18 - Prob. 4OQCh. 18 - Consider cyclic processes completely characterized...Ch. 18 - Prob. 6OQCh. 18 - Prob. 7OQCh. 18 - Prob. 8OQCh. 18 - A sample of a monatomic ideal gas is contained in...Ch. 18 - Assume a sample of an ideal gas is at room...Ch. 18 - Prob. 11OQCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - Prob. 6CQCh. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 10CQCh. 18 - Prob. 11CQCh. 18 - Discuss three different common examples of natural...Ch. 18 - The energy exhaust from a certain coal-fired...Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Argon enters a turbine at a rate of 80.0 kg/min, a...Ch. 18 - Prob. 16PCh. 18 - A refrigerator has a coefficient of performance...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - In 1993, the U.S. government instituted a...Ch. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - A heat pump used for heating shown in Figure...Ch. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - An ice tray contains 500 g of liquid water at 0C....Ch. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - (a) Prepare a table like Table 18.1 for the...Ch. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - (a) Find the kinetic energy of the moving air in a...Ch. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - An idealized diesel engine operates in a cycle...Ch. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 18 - Prob. 64PCh. 18 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. (a) How much heat transfer occurs to the environment by an electrical power station that uses 1.25 1014 J of heat transfer into the engine with an efficiency of 44%? |QC| = (b) What is the ratio of heat transfer to the environment to work output? |Qc W = (c) How much work is done? W= Larrow_forward(a) What is the best coefficient of performance for a refrigerator that cools an environment at −30.0ºC and has heat transfer to another environment at 45.0ºC ? (b) How much work in joules must be done for a heat transfer of 4186kJ from the cold environment? (c) What is the cost of doing this if the work costs 10.0 cents per 3.60×106 J (a kilowatthour)?(d) How many kJ of heat transfer occurs into the warm environment?(e) Discuss what type of refrigerator might operate between these temperatures.arrow_forwardQ. 52: A heat engine converts 1/6th of input heat into work. When temperature of sink is reduced by 62 K the efficiency of engine becomes 1/3. The temperature of source is (a) 362 K (b) 372 K (c) 392 K (d) 412 Karrow_forward
- This problem compares the energy output and heat transfer to the environment by two different types of nuclear power stations—one with the normal efficiency of 34.0%, and another with an improved efficiency of 40.0%. Suppose both have the same heat transfer into the engine in one day, 2.50×1014 J . (a) How much more electrical energy is produced by the more efficient power station? (b) How much less heat transfer occurs to the environment by the moreefficient power station? (One type of more efficient nuclear power station, the gas-cooled reactor, has not been reliable enough to be economically feasible in spite of its greater efficiency.)arrow_forwardA certain nuclear power plant has an electrical power output of 435 MW. The rate at which energy must be supplied to the plant is 1 420 MW. (a) What is the thermal efficiency of the power plant? (b) At what rate is thermal energy expelled by the plant?arrow_forward(a) What is the best coefficient of performance for a heat pump that has a hot reservoir temperature of 53.3°C and a cold reservoir temperature of -12.2°C? 4.982 (b) How much heat in kilocalories would it pump into the warm environment if 3.60 x 107 ) of work (10.0 kw · h) is put into it? 4.287e4 v kcal (c) Assume the cost of this work input is 10c/kW · h. Also assume that the cost of direct production of heat by burning natural gas is 81.0c per therm (a common unit of energy for natural gas), where a therm equals 1.055 x 10° J. Compare the cost of producing the same amount of heat by each method. cost of heat pump = 0,692 cost of natural gas Check unit conversions and your calculations.arrow_forward
- (a) What is the best coefficient of performance for a refrigerator that cools an environment at -28 C and has heat transfer to another environment at 49 ° C? COP, = 3.18 ref (b) How much work must be done for a heat transfer of 4186 kJ from the cold environment? W = 1316.4 kJ (c) What is the cost of doing this if the work costs 10.0 cents per 3.6x10° J (a kilowatt-hour)? Cost in cents = 3.66 (d) How many kJ of heat transfer, Q, occurs into the warm environment? Qn = 1314.5arrow_forward(a) How much heat transfer occurs to the environment by an electrical power station that uses 1.25×1014 J of heat transfer into the engine with an efficiency of 42.0%? (b) What is the ratio of heat transfer to the environment to work output? (c) How much work is done?arrow_forwardThis problem compares the energy output and heat transfer to the environment by two different types of nuclear power stations—one with the normal efficiency of 35 %, and another with an improved efficiency of 46 %. Suppose both have the same heat transfer into the engine in one day, 2.45 × 1014 J . Part (a) How much more electrical energy is produced by the more efficient power station? Part (b) What is the change in the heat transfer to the environment after the upgrade to the more efficient power station?arrow_forward
- QUESTION 19 Consider N solar collectors (N = 12, 14, 16), of dimension [2m x 2m, 2m x 1.5 m, 2m x2.5m] and an efficiency of (75, 65, 85) percent system, used to heat a water tank of (6000, 4000, 5000] liters. Calculate the final temperature reached after 8.8 sun-hours in Dubai under the following conditions: T = Initial temperature is (25)°C. DNI = Solar irradiation is (900) W/m2. Cp = Specific heat of water is 4190 g/kg.°C) Use the following Formula Rate of useful heat gäin Quseful = mfCp(Tf, out - Tr, in) %3D Rate of useful heat gain Quseful = Ncoll.Acoll-N.DNI Power output of the plant (electric power generated) P = n Acoll N dNi LN= [N] ii. Area = (B) L. Efficiency= [CI iv. Volume [DI (a) Final temperature will will be? (A] °C [Note: answer the question in two decimal units)arrow_forwardThe first law of thermodynamics states that the change AU in the internal energy of a system is given by AU = Q - W where Q is the heat, and W is the work. Both Q and W can be positive or negative numbers. Q is a positive number if and W is a positive number ifarrow_forwardOne of the most efficient engines ever built is a coal-fired steam turbine engine in the Ohio River valley, driving an electric generator as it operates between 1,870°C and 430°C. (a) What is its maximum theoretical efficiency? (b)Its actual efficiency is 42.0%. How much mechanical power does the engine deliver if it absorbs 1.35 ✕ 105 J of energy each second from the hot reservoir?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY