All the oxides of nitrogen have positive values of Δ G f ° at 298 K, but only one common oxide of nitrogen has a positive Δ S f ° . Identify that oxide of nitrogen without reference to thermodynamic data and explain.
All the oxides of nitrogen have positive values of Δ G f ° at 298 K, but only one common oxide of nitrogen has a positive Δ S f ° . Identify that oxide of nitrogen without reference to thermodynamic data and explain.
Solution Summary: The author explains that the nitrogen oxide of a S is spontaneous when the free energy change is less than zero.
All the oxides of nitrogen have positive values of
Δ
G
f
°
at 298 K, but only one common oxide of nitrogen has a positive
Δ
S
f
°
. Identify that oxide of nitrogen without reference to thermodynamic data and explain.
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
(c) The following data have been obtained for the hydrolysis of sucrose, C12H22O11, to
glucose, C6H12O6, and fructose C6H12O6, in acidic solution:
C12H22O11 + H2O → C6H12O6 + C6H12O6
[sucrose]/mol dm³
t/min
0
0.316
14
0.300
39
0.274
60
0.256
80
0.238
110
0.211
(i) Graphically prove the order of the reaction and determine the rate constant of the
reaction.
(ii) Determine the half-life, t½ for the hydrolysis of sucrose.
(III) adsorbent
(b) Adsorption of the hexacyanoferrate (III) ion, [Fe(CN)6] ³, on y-Al2O3 from aqueous
solution was examined. The adsorption was modelled using a modified Langmuir
isotherm, yielding the following values of Kat pH = 6.5:
(ii)
T/K
10-10 K
280
2.505
295
1.819
310
1.364
325
1.050
Determine the enthalpy of adsorption, AadsHⓇ.
If the reported value of entropy of adsorption, Aads Se = 146 J K-1 mol-1 under the above
conditions, determine Aads Gº.
with full details solution please
Chapter 18 Solutions
Mastering Chemistry with Pearson eText -- Standalone Access Card -- for Chemistry: Structure and Properties (2nd Edition)
General, Organic, and Biological Chemistry - 4th edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY