
(a)
To show: The overall efficiency of the two engine is
(a)

Answer to Problem 8P
The overall efficiency of the two engine is
Explanation of Solution
Given info: The efficiency of the two engine is
Write the expression of the efficiency of the engine
Here,
Write the expression of the efficiency of the engine
Here,
The exhaust
Here,
Substitute
Write the expression of the efficiency of the two engine device.
Substitute
Substitute
Conclusion:
Therefore, the overall efficiency of the two engine is
(b)
The efficiency of the combination engine.
(b)

Answer to Problem 8P
The efficiency of the combination engine is
Explanation of Solution
Given info: The efficiency of the two engine is
The overall efficiency of the two engine is,
Write the expression of the Carnot efficiency of the engine
Write the expression of the Carnot efficiency of the engine
Substitute
Conclusion:
Therefore, the efficiency of the combination engine is
(c)
Whether the efficiency is improved by using two engine instead of one.
(c)

Answer to Problem 8P
The efficiency is remains same even after combining the two engine.
Explanation of Solution
Given info: The efficiency of the two engine is
The Carnot engine has the maximum efficiency and no engine can have the efficiency more than the Carnot engine’s efficiency.
If the two Carnot engine is combined together than the efficiency is remain same because the combined engine is also a Carnot engine. So there is no requirement to use two engines simultaneously instead of one engine to improve the net efficiency. The work output increases but on the other hand the heat supplied also increase.
Conclusion:
Therefore, the efficiency is remains same even after combining the two engine.
(d)
The value of the intermediate temperature
(d)

Answer to Problem 8P
The value of the intermediate temperature
Explanation of Solution
Given info: The efficiency of the two engine is
The work done by both the engine is same.
Write the expression of the efficiency of the two engine device.
Substitute
Substitute
Substitute
Conclusion:
Therefore, the value of the intermediate temperature
(e)
The value of the intermediate temperature
(e)

Answer to Problem 8P
The value of the intermediate temperature
Explanation of Solution
Given info: The efficiency of the two engine is
The efficiency of both the engine is same.
Substitute
Conclusion:
Therefore, the value of the intermediate temperature
Want to see more full solutions like this?
Chapter 18 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





