
(a)
The unknown pressure, volume and temperature.
(a)

Answer to Problem 16P
The unknown parameters have been tabulated.
State | |||
A | |||
B | |||
C | |||
D |
Explanation of Solution
Consider the first adiabatic process along D through A
Write the equation for adiabatic process,
Here
Rearrange (I) in terms of
Write the ideal gas equation
Here
Substitute for
Consider the isothermal process along C through D.
Therefore,
Here,
Write down the equation for isothermal process.
Here
Substitute (II) in (V)
Consider the adiabatic process along B through C.
Here
Substitute (VI) in (VII)
Consider the isothermal process along A through B
Substitute (IX) in (VIII)
Conclusion:
Substitute
Substitute
Therefore,
Substitute
Substitute
Substitute
Therefore,
State | |||
A | |||
B | |||
C | |||
D |
(b)
Energy, work done and change in internal energy involved in each steps.
(b)

Answer to Problem 16P
Energy, work done and change in internal energy has been tabulated.
Process | |||
A to B | |||
B to C | |||
C to D | |||
D to E |
Explanation of Solution
Consider the isothermal process along A through B.
Write the equation for energy transfer
Here
Then by first law of thermodynamics
Here
Consider the adiabatic process along B through C where
Here
Substitute
Consider the isothermal process along C through D
Consider the adiabatic process along D through A.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore
Process | |||
A to B | |||
B to C | |||
C to D | |||
D to E |
(c)
Efficiency of the engine.
(c)

Answer to Problem 16P
Efficiency is
Explanation of Solution
Write the equation for efficiency
Here
Conclusion:
Refer sub part b and substitute
Efficiency is
(d)
To prove that the efficiency is equal to Carnot efficiency.
(d)

Answer to Problem 16P
The efficiency is equal to Carnot efficiency.
Explanation of Solution
Write the equation for Carnot efficiency
Here
Conclusion:
Substitute
Thus, the efficiency is equal to Carnot efficiency
Want to see more full solutions like this?
Chapter 18 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





