
(a)
Interpretation:
The
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(a)

Answer to Problem 84SCQ
The
Explanation of Solution
The
Given:
Refer to Appendix L for the values of standard entropies.
The standard entropy of
The standard entropy of
The standard entropy of
The balanced chemical equation is:
The
Substitute the values,
(b)
Interpretation:
It should be identified that
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(b)

Answer to Problem 84SCQ
The value of
Explanation of Solution
The entropy of the system is dependent upon temperature. Entropy of any system increases with increase in the temperature due to the heat which is added to the system at higher temperatures.
(c)
Interpretation:
It should be identified that
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(c)

Answer to Problem 84SCQ
The
Explanation of Solution
The
Here,
Thus,
(d)
Interpretation:
It should be identified that
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(d)

Answer to Problem 84SCQ
The value of
Explanation of Solution
The entropy change for the universe is the sum of entropy change for the system and for surroundings.
Both
(e)
Interpretation:
It should be identified that does exothermic reaction will always results in positive
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(e)

Answer to Problem 84SCQ
The exothermic reaction does not necessarily leads to a positive value of
Explanation of Solution
The exothermic reaction have negative value of free energy change which means that the
(f)
Interpretation:
It should be identified that reaction of
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(f)

Answer to Problem 84SCQ
The reaction is spontaneous at
The reaction is not spontaneous at
Explanation of Solution
The free energy change for the given reaction is calculated below.
Given:
Refer to Appendix L for the values of standard entropies.
The standard enthalpy of
The standard enthalpy of
The standard enthalpy of
The balanced chemical equation is:
The
Substitute the values,
Now,
Substitute the values at temperature
Thus, the reaction is spontaneous at
Substitute the values at temperature
Thus, the reaction is not spontaneous at
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry & Chemical Reactivity
- Calculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuu, don't solve it by AI plleeaasseeearrow_forward
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- III O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forward
- What is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forwardSelect the major product of the following reaction. Br Br₂, light D Br Br Br Brarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





