
(a)
Interpretation:
The
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(a)

Answer to Problem 84SCQ
The
Explanation of Solution
The
Given:
Refer to Appendix L for the values of standard entropies.
The standard entropy of
The standard entropy of
The standard entropy of
The balanced chemical equation is:
The
Substitute the values,
(b)
Interpretation:
It should be identified that
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(b)

Answer to Problem 84SCQ
The value of
Explanation of Solution
The entropy of the system is dependent upon temperature. Entropy of any system increases with increase in the temperature due to the heat which is added to the system at higher temperatures.
(c)
Interpretation:
It should be identified that
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(c)

Answer to Problem 84SCQ
The
Explanation of Solution
The
Here,
Thus,
(d)
Interpretation:
It should be identified that
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(d)

Answer to Problem 84SCQ
The value of
Explanation of Solution
The entropy change for the universe is the sum of entropy change for the system and for surroundings.
Both
(e)
Interpretation:
It should be identified that does exothermic reaction will always results in positive
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(e)

Answer to Problem 84SCQ
The exothermic reaction does not necessarily leads to a positive value of
Explanation of Solution
The exothermic reaction have negative value of free energy change which means that the
(f)
Interpretation:
It should be identified that reaction of
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The rearranged expression is,
(f)

Answer to Problem 84SCQ
The reaction is spontaneous at
The reaction is not spontaneous at
Explanation of Solution
The free energy change for the given reaction is calculated below.
Given:
Refer to Appendix L for the values of standard entropies.
The standard enthalpy of
The standard enthalpy of
The standard enthalpy of
The balanced chemical equation is:
The
Substitute the values,
Now,
Substitute the values at temperature
Thus, the reaction is spontaneous at
Substitute the values at temperature
Thus, the reaction is not spontaneous at
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry & Chemical Reactivity
- € + Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn it into the product of the reaction. Also, write the name of the product molecule under the drawing area. Name: ☐ H C=0 X H- OH HO- H HO- -H CH₂OH ×arrow_forwardDraw the Haworth projection of the disaccharide made by joining D-glucose and D-mannose with a ẞ(1-4) glycosidic bond. If the disaccharide has more than one anomer, you can draw any of them. Click and drag to start drawing a structure. Xarrow_forwardEpoxides can be opened in aqueous acid or aqueous base to produce diols (molecules with two OH groups). In this question, you'll explore the mechanism of epoxide opening in aqueous acid. 2nd attempt Be sure to show all four bonds at stereocenters using hash and wedge lines. 0 0 Draw curved arrows to show how the epoxide reacts with hydronium ion. 100 +1: 1st attempt Feedback Be sure to show all four bonds at stereocenters using hash and wedge lines. See Periodic Table See Hint H A 5 F F Hr See Periodic Table See Hintarrow_forward
- 03 Question (1 point) For the reaction below, draw both of the major organic products. Be sure to consider stereochemistry. > 1. CH₂CH₂MgBr 2. H₂O 3rd attempt Draw all four bonds at chiral centers. Draw all stereoisomers formed. Draw the structures here. e 130 AN H See Periodic Table See Hint P C Brarrow_forwardYou may wish to address the following issues in your response if they are pertinent to the reaction(s) you propose to employ:1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Please make it in detail and draw it out too in what step what happens. Thank you for helping me!arrow_forward1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Everything in detail and draw out and write it.arrow_forward
- Calculating the pH at equivalence of a titration 3/5 Izabella A chemist titrates 120.0 mL of a 0.7191M dimethylamine ((CH3)2NH) solution with 0.5501 M HBr solution at 25 °C. Calculate the pH at equivalence. The pk of dimethylamine is 3.27. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HBr solution added. pH = ☐ ✓ 18 Ar Boarrow_forwardAlcohols can be synthesized using an acid-catalyzed hydration of an alkene. An alkene is combined with aqueous acid (e.. sulfuric acid in water). The reaction mechanism typically involves a carbocation intermediate. > 3rd attempt 3343 10 8 Draw arrows to show the reaction between the alkene and hydronium ion. that 2nd attempt Feedback 1st attempt تعمال Ju See Periodic Table See Hint F D Ju See Periodic Table See Hintarrow_forwardDraw the simplified curved arrow mechanism for the reaction of acetone and CHgLi to give the major product. 4th attempt Π Draw the simplified curved arrow mechanism T 3rd attempt Feedback Ju See Periodic Table See Hint H -H H -I H F See Periodic Table See Hintarrow_forward
- Select the correct reagent to accomplish the first step of this reaction. Then draw a mechanism on the Grignard reagent using curved arrow notation to show how it is converted to the final product. 4th attempt Part 1 (0.5 point) Select the correct reagent to accomplish the first step of this reaction. Choose one: OA Mg in ethanol (EtOH) OB. 2 Li in THF O C. Li in THF D. Mg in THF O E Mg in H2O Part 2 (0.5 point) Br Part 1 Bri Mg CH B CH, 1 Draw intermediate here, but no arrows. © TE See Periodic Table See Hint See Hint ין Harrow_forwardSelect the product for the following reaction. HO HO PCC OH ○ OH O HO ○ HO HO HOarrow_forward5:45 Х Select the final product for the following reaction sequence. O O 1. Mg. ether 2.D.Oarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





