Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 67GP
A small city requires about 15 MW of power Suppose that instead of using high-voltage lines to supply the power, the power is delivered at 120 V.
Assuming a two-wire line of 0.50-cm-diameter copper wire, estimate the cost of the energy lost to heat per hour per meter. Assume the cost of electricity is about 12 cents per kWh.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are given the job of evaluating potential power line systems. One system is designed to operate at V = 3000 V, and another would operate at V = 6500 V. Suppose the power line at the higher voltage would dissipate 3 % of the power that it carries. What percentage of the power would be dissipated in the low-voltage power line?
A 5.5-kW water heater operates at 240 V.Should the heater circuit have a 20A or a 30A circuit breaker?ii.Assuming 85%efficiency,how long will the heater take to heat the water ina 0.2085-m3 tank from 20C to 80C?The density of water is 1,000 kg/m3and the specific heat capacity is 4,200 J/kg/C.
At RM 0.218 Kilowatt-hour, how much it cost to leave a 6 W kitchen bulb on day and nightfor a 6 months period?
Chapter 18 Solutions
Physics
Ch. 18 - Prob. 1OQCh. 18 - When an electric cell is connected to a circuit,...Ch. 18 - When a flashlight is operated, what is being used...Ch. 18 - Prob. 3QCh. 18 - Prob. 4QCh. 18 - Prob. 5QCh. 18 - Prob. 6QCh. 18 - What happens when aIightbulb burns out?Ch. 18 - Prob. 8QCh. 18 - Prob. 9Q
Ch. 18 - Prob. 10QCh. 18 - Prob. 11QCh. 18 - Prob. 12QCh. 18 - Prob. 13QCh. 18 - When electric lights are operated on low-frequency...Ch. 18 - Prob. 15QCh. 18 - Prob. 16QCh. 18 - Prob. 17QCh. 18 - Prob. 18QCh. 18 - Prob. 19QCh. 18 - Prob. 20QCh. 18 - Prob. 1MCQCh. 18 - Prob. 2MCQCh. 18 - Prob. 3MCQCh. 18 - Prob. 4MCQCh. 18 - Prob. 5MCQCh. 18 - Prob. 6MCQCh. 18 - Prob. 7MCQCh. 18 - Prob. 8MCQCh. 18 - Prob. 9MCQCh. 18 - Prob. 10MCQCh. 18 - Prob. 11MCQCh. 18 - A current of 1.60 A flows in a wire. How many...Ch. 18 - A service station charges a battery using a...Ch. 18 - Prob. 3PCh. 18 - What is the resistance of a toaster if 120 V...Ch. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - (a) What is the current in the element of an...Ch. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - A 4.5-V battery is connected to a bulb whose...Ch. 18 - Prob. 11PCh. 18 - What is the diameter of a 1.00-m length of...Ch. 18 - What is the resistance of a 5.4-m length of copper...Ch. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - A certain copper wire has a resistance of 15.0 ....Ch. 18 - Compute the voltage drop along a 21-m length of...Ch. 18 - Two aluminum wires have the same resistance. If...Ch. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - A 10.0-m length of wire consists of 5.0 m of...Ch. 18 - What is the maximum power consumption of a 3.0-V...Ch. 18 - The heating element of an electric oven is...Ch. 18 - What is the maximum voltage that can be applied...Ch. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - A 120-V hair dryer has two settings: 950 W and...Ch. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - The current in an electromagnet connected to a...Ch. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Determine (a) the maximum instantaneous power...Ch. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - A 4.80-m length of 2.0-mm-diameter wire carries a...Ch. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61GPCh. 18 - Prob. 62GPCh. 18 - Prob. 63GPCh. 18 - Prob. 64GPCh. 18 - Prob. 65GPCh. 18 - Prob. 66GPCh. 18 - A small city requires about 15 MW of power Suppose...Ch. 18 - Prob. 68GPCh. 18 - Prob. 69GPCh. 18 - Prob. 70GPCh. 18 - Prob. 71GPCh. 18 - Prob. 72GPCh. 18 - Prob. 73GPCh. 18 - V is applied to two different conductors made of...Ch. 18 - Prob. 75GPCh. 18 - Prob. 76GPCh. 18 - Prob. 77GPCh. 18 - A 15 2-?resistor is made from a coil of copper...Ch. 18 - Prob. 79GPCh. 18 - Prob. 80GPCh. 18 - Prob. 81GPCh. 18 - Prob. 82GPCh. 18 - Prob. 83GPCh. 18 - Prob. 84GPCh. 18 - Prob. 85GPCh. 18 - If a wire of resistance R is stretched uniformly...Ch. 18 - Prob. 87GPCh. 18 - Prob. 88GPCh. 18 - Prob. 89GPCh. 18 - Prob. 90GPCh. 18 - Prob. 91GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Integrated Concepts (a) Assuming 95.0% efficiency for the conversion of electrical power by the motor, what current must the 12.0-V batteries of a 750-kg electric car be able to supply: (a) To accelerate from rest to 25.0 m/s in 1.00 min? (b) To climb a 2.00 102-m- high hill in 2.00 min at a constant 25.0-m/s speed while exerting 5.00 102 N of force to overcome air resistance and friction? (c) To travel at a constant 25.0-m/s speed, exerting a 5.00 102 N force to overcome air resistance and friction? See Figure 20.44.arrow_forwardA 120-V immersion heater consists of a coil of wire that is placed in a cup to boil the water. The heater can boil one cup of 20.00°C water in 180.00 seconds. You buy one to use in your dorm room, but you are worried that you will overload the circuit and nip the 15.00-A, 120-V circuit breaker, which supplies your dorm room. In your dorm room, you have four 100.00-W incandescent lamps and a 1500.00-W space heater, (a) What is the power rating of the immersion heater? (b) Will it trip the breaker when everything is turned on? (c) If it you replace the incandescent bulbs with 18.00-W LED, will the breaker nip when everything is turned on?arrow_forwardAssume that global lightning on the Earth constitutes a constant current of 1.00 kA between the ground and an atmospheric layer at potential 300 kV. (a) Find the power of terrestrial lightning. (b) For comparison, find the power of sunlight falling on the Earth. Sunlight has an intensity of 1 370 W/m2 above the atmosphere. Sunlight falls perpendicularly on the circular projected area that the Earth presents to the Sun.arrow_forward
- Integrated Concepts (a) An immersion heater utilizing 120 V can raise the temperature of a 1.00 102 -g aluminum cup containing 350 g of water from 20.0°C to 95.0°C in 2.00 min. Find its resistance, assuming it is constant during the process. (b) A lower resistance would shorten the heating time. Discuss the practical limits to speeding the heating by lowering the resistance.arrow_forwardAn office worker uses an immersion heater to warm 250 g of water in a light, covered, insulated cup from 20.C to 100. C in 4.00 minutes. The heater is a Nichrome resistance wire connected to a 120-V power supply. Assume the wire is at 100. C throughout the 4.00-min time interval. (a) Calculate the average power required to warm the water to 100. C in 4.00 min. (b) Calculate the required resistance in the heating element at 100. C. (c) Calculate the resistance of the heating element at 20. C. (d) Derive a relationship between the diameter of the wire, the resistivity at 20. C, 0, the resistance at 20. C, R0, and the length L. (e) If L = 3.00 m, what is the diameter of the wire?arrow_forwardReview. When a straight wire is warmed, its resistance is given by R = R0,[1 + a(T T0)] according to Equation 27.20, where a is the temperature coefficient of resistivity. This expression needs to be modified if we include the change in dimensions of the wire due to thermal expansion. For a copper wire of radius 0.100 0 mm and length 2.000 m, find its resistance at 100.0C, including the effects of both thermal expansion and temperature variation of resistivity. Assume the coefficients are known to four significant figures.arrow_forward
- Review. The healing element of an electric coffee maker operates at 120 V and carries a current of 2.00 A. Assuming the water absorbs all the energy delivered to the resistor, calculate the time interval during which the temperature of 0.500 kg of water rises from room temperature (23.00) to the boiling point.arrow_forwardCalculate the rate of the flashlight’s energy consumption. Suppose a flashlight has 6.8 × 102 C of charge pass through it during time 0.35 h. A. What is the rate of the flashlight’s energy consumption, in watts, if it operates at a voltage of 3.00 V?arrow_forwardDy 3. An extension cord made of two wires of diameter 0.129 cm (no. 16 copper wire) and of length 2.7 m is connected to an electric heater which draws 18.0 A on a 240 V line. One wire takes current to the heater, the other acts as the return. How much power is dissipated in the cord? (a) 56 mW (b) 5.6 W (c) 22 W (d) 4.3 kWarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY