GO Evaporative cooling of beverages. A cold beverage can be kept cold even on a warm day if it is slipped into a porous ceramic container that has been soaked in water. Assume that energy lost to evaporation matches the net energy gained via the radiation exchange through the top and side surfaces. The container and beverage have temperature T = 15°C, the environment has temperature T env = 32°C, and the container is a cylinder with radius r = 22 cm and height 10 cm. Approximate the emissivity as ε = 1, and neglect other energy exchanges. At what rate dm/dt is the container losing water mass?
GO Evaporative cooling of beverages. A cold beverage can be kept cold even on a warm day if it is slipped into a porous ceramic container that has been soaked in water. Assume that energy lost to evaporation matches the net energy gained via the radiation exchange through the top and side surfaces. The container and beverage have temperature T = 15°C, the environment has temperature T env = 32°C, and the container is a cylinder with radius r = 22 cm and height 10 cm. Approximate the emissivity as ε = 1, and neglect other energy exchanges. At what rate dm/dt is the container losing water mass?
GO Evaporative cooling of beverages. A cold beverage can be kept cold even on a warm day if it is slipped into a porous ceramic container that has been soaked in water. Assume that energy lost to evaporation matches the net energy gained via the radiation exchange through the top and side surfaces. The container and beverage have temperature T = 15°C, the environment has temperature Tenv = 32°C, and the container is a cylinder with radius r = 22 cm and height 10 cm. Approximate the emissivity as ε = 1, and neglect other energy exchanges. At what rate dm/dt is the container losing water mass?
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0
s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?
a (m/s²)
as
-2
0
2
t(s)
4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Westros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.