Leidenfrost effect . A water drop will last about 1 s on a hot skillet with a temperature between 100°C and about 200°C. However, if the skillet is much hotter, the drop can last several minutes, an effect named after an early investigator. The longer lifetime is due to the support of a thin layer of air and water vapor that separates the drop from the metal (by distance L in Fig. 18-48). Let L = 0.100 mm, and assume that the drop is flat with height h = 1.50 mm and bottom face area A = 4.00 × 10 –6 m 2 . Also assume that the skillet has a constant temperature T s = 300°C and the drop has a temperature of 100°C. Water has density ρ = 1000 kg/m 3 , and the supporting layer has thermal conductivity k = 0.026 W/mžK. (a) At what rate is energy conducted from the skillet to the drop though the drop's bottom surface? (b) If conduction is the primary way energy moves from the skillet to the drop, how long will the drop last? Figure 18-48 Problem 62.
Leidenfrost effect . A water drop will last about 1 s on a hot skillet with a temperature between 100°C and about 200°C. However, if the skillet is much hotter, the drop can last several minutes, an effect named after an early investigator. The longer lifetime is due to the support of a thin layer of air and water vapor that separates the drop from the metal (by distance L in Fig. 18-48). Let L = 0.100 mm, and assume that the drop is flat with height h = 1.50 mm and bottom face area A = 4.00 × 10 –6 m 2 . Also assume that the skillet has a constant temperature T s = 300°C and the drop has a temperature of 100°C. Water has density ρ = 1000 kg/m 3 , and the supporting layer has thermal conductivity k = 0.026 W/mžK. (a) At what rate is energy conducted from the skillet to the drop though the drop's bottom surface? (b) If conduction is the primary way energy moves from the skillet to the drop, how long will the drop last? Figure 18-48 Problem 62.
Leidenfrost effect. A water drop will last about 1 s on a hot skillet with a temperature between 100°C and about 200°C. However, if the skillet is much hotter, the drop can last several minutes, an effect named after an early investigator. The longer lifetime is due to the support of a thin layer of air and water vapor that separates the drop from the metal (by distance L in Fig. 18-48). Let L = 0.100 mm, and assume that the drop is flat with height h = 1.50 mm and bottom face area A = 4.00 × 10–6 m2. Also assume that the skillet has a constant temperature Ts = 300°C and the drop has a temperature of 100°C. Water has density ρ = 1000 kg/m3, and the supporting layer has thermal conductivity k = 0.026 W/mžK. (a) At what rate is energy conducted from the skillet to the drop though the drop's bottom surface? (b) If conduction is the primary way energy moves from the skillet to the drop, how long will the drop last?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.