The giant hornet Vespa mandarinia japonica preys on Japanese bees. However, if one of the hornets attempts to invade a beehive, several hundred of the bees quickly form a compact ball around the hornet to stop it. They don’t sting, bite, crush, or suffocate it. Rather they overheat it by quickly raising their body temperatures from the normal 35°C to 47°C or 48°C, which is lethal to the hornet but not to the bees (Fig. 18-44). Assume the following: 500 bees form a ball of radius R = 2.0 cm for a time t = 20 min, the primary loss of energy by the ball is by thermal radiation , the ball’s surface has emissivity ε = 0.80, and the ball has a uniform temperature. On average, how much additional energy must each bee produce during the 20 min to maintain 47°C? Figure 18-44 Problem 56.
The giant hornet Vespa mandarinia japonica preys on Japanese bees. However, if one of the hornets attempts to invade a beehive, several hundred of the bees quickly form a compact ball around the hornet to stop it. They don’t sting, bite, crush, or suffocate it. Rather they overheat it by quickly raising their body temperatures from the normal 35°C to 47°C or 48°C, which is lethal to the hornet but not to the bees (Fig. 18-44). Assume the following: 500 bees form a ball of radius R = 2.0 cm for a time t = 20 min, the primary loss of energy by the ball is by thermal radiation , the ball’s surface has emissivity ε = 0.80, and the ball has a uniform temperature. On average, how much additional energy must each bee produce during the 20 min to maintain 47°C? Figure 18-44 Problem 56.
The giant hornet Vespa mandarinia japonica preys on Japanese bees. However, if one of the hornets attempts to invade a beehive, several hundred of the bees quickly form a compact ball around the hornet to stop it. They don’t sting, bite, crush, or suffocate it. Rather they overheat it by quickly raising their body temperatures from the normal 35°C to 47°C or 48°C, which is lethal to the hornet but not to the bees (Fig. 18-44). Assume the following: 500 bees form a ball of radius R = 2.0 cm for a time t = 20 min, the primary loss of energy by the ball is by thermal radiation, the ball’s surface has emissivity ε = 0.80, and the ball has a uniform temperature. On average, how much additional energy must each bee produce during the 20 min to maintain 47°C?
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
A
Incident
ray at A
Note: This diagram is not to
scale.
Air (n = 1.00)
Water (n = 1.34)
B
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
A
Incident
ray at A
Note: This diagram is not to
scale.
Air (n = 1.00)
Water (n = 1.34)
B
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.