
ORGANIC CHEMISTRY-WILEYPLUS NEXTGEN
4th Edition
ISBN: 9781119760924
Author: Klein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 55PP
(a)
Interpretation Introduction
Interpretation:
- The most likely position at which monobromination could occur has to be identified.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in
aromatic compounds . Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through
alkyl halides oralkenes.
(b)
Interpretation Introduction
Interpretation:
- The most likely position at which monobromination could occur has to be identified.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
(c)
Interpretation Introduction
Interpretation:
- The most likely position at which monobromination could occur has to be identified.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Draw product A, indicating what type of reaction occurs.
NH2
F3C
CF3
NH
OMe
NH2-NH2, ACOH
A
Photochemical smog is formed in part by the action of light on nitrogen dioxide. The wavelength of radiation absorbed by NO2 in this reaction is 197 nm.(a) Draw the Lewis structure of NO2 and sketch its π molecular orbitals.(b) When 1.56 mJ of energy is absorbed by 3.0 L of air at 20 °C and 0.91 atm, all the NO2 molecules in this sample dissociate by the reaction shown. Assume that each absorbed photon leads to the dissociation (into NO and O) of one NO2 molecule. What is the proportion, in parts per million, of NO2 molecules in this sample? Assume that the sample behaves ideally.
Correct each molecule in the drawing area below so that it has the skeletal ("line") structure it would have if it were
dissolved in a 0.1 M aqueous solution of HCI.
If there are no changes to be made, check the No changes box under the drawing area.
No changes.
HO
Explanation
Check
NH,
2
W
O
:□
G
©2025 M
unter Accessibility
Chapter 18 Solutions
ORGANIC CHEMISTRY-WILEYPLUS NEXTGEN
Ch. 18.2 - Prob. 1CCCh. 18.3 - Prob. 2CCCh. 18.3 - Prob. 3CCCh. 18.4 - Prob. 4CCCh. 18.5 - Prob. 5CCCh. 18.5 - Prob. 6CCCh. 18.5 - Prob. 7CCCh. 18.6 - Prob. 8CCCh. 18.6 - Prob. 9CCCh. 18.6 - Prob. 10CC
Ch. 18.7 - Prob. 11CCCh. 18.7 - Prob. 12CCCh. 18.8 - Prob. 13CCCh. 18.9 - Prob. 14CCCh. 18.9 - Prob. 15CCCh. 18.10 - Prob. 1LTSCh. 18.10 - Prob. 16PTSCh. 18.10 - Prob. 17ATSCh. 18.11 - Prob. 2LTSCh. 18.11 - Prob. 18PTSCh. 18.12 - Prob. 24CCCh. 18.12 - Prob. 25CCCh. 18.12 - Prob. 5LTSCh. 18.12 - Prob. 26PTSCh. 18.12 - Prob. 6LTSCh. 18.12 - Prob. 28PTSCh. 18.13 - Prob. 30CCCh. 18.13 - Prob. 31CCCh. 18.13 - Prob. 32CCCh. 18.14 - Prob. 33CCCh. 18.14 - Prob. 34CCCh. 18.15 - Prob. 7LTSCh. 18.15 - Prob. 35PTSCh. 18.15 - Prob. 36PTSCh. 18 - Prob. 38PPCh. 18 - Prob. 39PPCh. 18 - Prob. 40PPCh. 18 - Prob. 41PPCh. 18 - Prob. 42PPCh. 18 - Prob. 43PPCh. 18 - Prob. 45PPCh. 18 - Prob. 46PPCh. 18 - Prob. 47PPCh. 18 - Prob. 48PPCh. 18 - Prob. 49PPCh. 18 - Prob. 50PPCh. 18 - Prob. 51PPCh. 18 - Prob. 52PPCh. 18 - Prob. 53PPCh. 18 - Prob. 54PPCh. 18 - Prob. 55PPCh. 18 - Prob. 56PPCh. 18 - Prob. 57PPCh. 18 - Prob. 58PPCh. 18 - Prob. 59PPCh. 18 - Prob. 60PPCh. 18 - Prob. 61PPCh. 18 - Prob. 62PPCh. 18 - Prob. 63PPCh. 18 - Prob. 64PPCh. 18 - Prob. 80IPCh. 18 - Prob. 81IPCh. 18 - Prob. 82IPCh. 18 - Prob. 83IPCh. 18 - Prob. 84IPCh. 18 - Prob. 85IPCh. 18 - Prob. 86IPCh. 18 - Prob. 87IPCh. 18 - Prob. 88IPCh. 18 - Prob. 89IP
Knowledge Booster
Similar questions
- An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.arrow_forwardThe reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?arrow_forwardOne liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forward
- How does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forwardDraw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forwardBenzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forward
- Draw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forwardpls helparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY