
Chemistry: A Molecular Approach
3rd Edition
ISBN: 9780321809247
Author: Nivaldo J. Tro
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 51E
Make a sketch of the voltaic cell represented by the line notation. Write the overall balanced equation for the reaction and calculate
Sn(s) | Sn2+(aq) || NO(g) | NO3–(aq), H+(aq) | Pt(s)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Using the Nernst equation to calculate nonstandard cell voltage
Try Again
Your answer is wrong. In addition to checking your math, check that you used the right data and DID NOT round any intermediate calculations.
A galvanic cell at a temperature of 25.0 °C is powered by the following redox reaction:
2+
2+
Sn²+ Ba(s)
(aq) + Ba (s) Sn (s) + Ba²+ (aq)
→>>
Suppose the cell is prepared with 6.10 M Sn
2+
2+
in one half-cell and 6.62 M Ba
in the other.
Calculate the cell voltage under these conditions. Round your answer to 3 significant digits.
1.71 V
☐ x10
☑
5
0/5
?
00.
18
Ar
Question: Find both the b (gradient) and a (y-intercept) value from the list of data below:
(x1 -x̄)
370.5
(y1 - ȳ)
5.240
(x2 - x̄)
142.5
(y2 - ȳ)
2.004
(x3 - x̄)
28.5
(y3 - ȳ)
0.390
(x4 - x̄)
-85.5
(y4 - ȳ)
-1.231
(x5 - x̄)
-199.5
(y5 - ȳ)
-2.829
(x6 - x̄)
-256.5
(y6 - ȳ)
-3.575
Calculating standard reaction free energy from standard reduction...
Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction.
Be sure your answer has the correct number of significant digits.
3Cu+ (aq) + Cro²¯ (aq) +4H₂O (1) → 3Cu²+ (aq) +Cr(OH)3 (s)+5OH˜¯ (aq)
0
kJ
☐ x10
00.
18
Ar
Chapter 18 Solutions
Chemistry: A Molecular Approach
Ch. 18 - Prob. 1SAQCh. 18 - Q2. Which statement is true for voltaic cells?
a)...Ch. 18 - Prob. 3SAQCh. 18 - Prob. 4SAQCh. 18 - Prob. 5SAQCh. 18 - Prob. 6SAQCh. 18 - Q7. Use Table 18.1 to calculate G for the...Ch. 18 - Prob. 8SAQCh. 18 - Prob. 9SAQCh. 18 - Prob. 10SAQ
Ch. 18 - Prob. 11SAQCh. 18 - Prob. 12SAQCh. 18 - Prob. 13SAQCh. 18 - Prob. 14SAQCh. 18 - Q15. Which metal can be used as a sacrificial...Ch. 18 - 1. In electrochemistry, spontaneous redox...Ch. 18 - Prob. 2ECh. 18 - Prob. 3ECh. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - 15. Is a spontaneous redox reaction obtained by...Ch. 18 - 16. How can Table 19.1 be used to predict whether...Ch. 18 - 17. Explain why , , and K are all interrelated.
Ch. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - 23. What are the anode and cathode reactions in a...Ch. 18 - Prob. 24ECh. 18 - 25. What is a fuel cell? What is the most common...Ch. 18 - Prob. 26ECh. 18 - 27. List some applications of electrolysis.
Ch. 18 - Prob. 28ECh. 18 - 29. What species is oxidized, and what species is...Ch. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Balance each redox reaction occurring in acidic...Ch. 18 - 38. Balance each redox reaction occurring in...Ch. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - 41. Balance each redox reaction occurring in basic...Ch. 18 - Prob. 42ECh. 18 - 43. Sketch a voltaic cell for each redox reaction....Ch. 18 - 44. Sketch a voltaic cell for each redox reaction....Ch. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - 47. Consider the voltaic cell:
a. Determine the...Ch. 18 - 48. Consider the voltaic cell:
a. Determine the...Ch. 18 - 49. Use line notation to represent each...Ch. 18 - 50. Use line notation to represent each...Ch. 18 - Make a sketch of the voltaic cell represented by...Ch. 18 - 52. Make a sketch of the voltaic cell represented...Ch. 18 - 53. Determine whether or not each redox reaction...Ch. 18 - 54. Determine whether or not each redox reaction...Ch. 18 - 55. Which metal could you use to reduce Mn2+ ions...Ch. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Prob. 58ECh. 18 - Prob. 59ECh. 18 - Prob. 60ECh. 18 - Prob. 61ECh. 18 - 62. Calculate for each balanced redox reaction...Ch. 18 - Prob. 63ECh. 18 - 64. Which metal is the best reducing agent?
a....Ch. 18 - 65. Use tabulated electrode potentials to...Ch. 18 - Prob. 66ECh. 18 - 67. Calculate the equilibrium constant for each of...Ch. 18 - 68. Calculate the equilibrium constant for each of...Ch. 18 - Prob. 69ECh. 18 - Prob. 70ECh. 18 - Prob. 71ECh. 18 - 72. Calculate and for a redox reaction with n =...Ch. 18 - 73. A voltaic cell employs the following redox...Ch. 18 - 74. A voltaic cell employs the redox reaction:
2...Ch. 18 - 75. An electrochemical cell is based on these two...Ch. 18 - Prob. 76ECh. 18 - 77. A voltaic cell consists of a Zn/Zn2+ half-cell...Ch. 18 - 78. A voltaic cell consists of a Pb/Pb2+ half-cell...Ch. 18 - Prob. 79ECh. 18 - Prob. 80ECh. 18 - 81. A concentration cell consists of two Sn/Sn2+...Ch. 18 - Prob. 82ECh. 18 - 83. Determine the optimum mass ratio of Zn to MnO2...Ch. 18 - 84. What mass of lead sulfate is formed in a...Ch. 18 - 85. Refer to the tabulated values of in Appendix...Ch. 18 - 86. Refer to the tabulated values of in Appendix...Ch. 18 - Prob. 87ECh. 18 - Prob. 88ECh. 18 - Prob. 89ECh. 18 - Prob. 90ECh. 18 - 91. Write equations for the half-reactions that...Ch. 18 - Prob. 92ECh. 18 - 93. Write equations for the half-reactions that...Ch. 18 - 94. What products are obtained in the electrolysis...Ch. 18 - 95. Write equations for the half-reactions that...Ch. 18 - Prob. 96ECh. 18 - 97. Make a sketch of an electrolysis cell that...Ch. 18 - Prob. 98ECh. 18 - Prob. 99ECh. 18 - Prob. 100ECh. 18 - Prob. 101ECh. 18 - Prob. 102ECh. 18 - 105103. Consider the unbalanced redox...Ch. 18 - Prob. 104ECh. 18 - 107. Consider the molecular views of an Al strip...Ch. 18 - 106. Consider the molecular view of an...Ch. 18 - Prob. 107ECh. 18 - Prob. 108ECh. 18 - Prob. 109ECh. 18 - Prob. 110ECh. 18 - Prob. 111ECh. 18 - Prob. 112ECh. 18 - Prob. 113ECh. 18 - Prob. 114ECh. 18 - Prob. 115ECh. 18 - Prob. 116ECh. 18 - 119. The Ksp of CuI is 1.1 × 10–12. Find Ecell for...Ch. 18 - 120. The Ksp of Zn(OH)2 is 1.8 × 10–14. Find Ecell...Ch. 18 - 121. Calculate and K for each reaction.
a. The...Ch. 18 - Prob. 120ECh. 18 - Prob. 121ECh. 18 - Prob. 122ECh. 18 - Prob. 123ECh. 18 - Prob. 124ECh. 18 - Prob. 125ECh. 18 - Prob. 126ECh. 18 - Prob. 127ECh. 18 - 130. To what pH should you adjust a standard...Ch. 18 - 131. Suppose a hydrogen–oxygen fuel-cell generator...Ch. 18 - 132. A voltaic cell designed to measure [Cu2+] is...Ch. 18 - 133. The surface area of an object to be gold...Ch. 18 - Prob. 132ECh. 18 - Prob. 133ECh. 18 - Prob. 134ECh. 18 - Prob. 135ECh. 18 - Prob. 136ECh. 18 - Prob. 137ECh. 18 - 140. A redox reaction employed in an...Ch. 18 - 141. A redox reaction has an equilibrium constant...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 241.7 mL of a 0.4900M solution of methylamine (CH3NH2) with a 0.7800M solution of HNO3. The pK of methylamine is 3.36. Calculate the pH of the base solution after the chemist has added 17.7 mL of the HNO3 solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution added. Round your answer to 2 decimal places. pH = ☑ ? 18 Ararrow_forwardThe following is two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forwardThe following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 340.0mmol/L 262.7mmol/L QUESTION: For both groups (Regular & Salt Reduced tomato sauce) of data provide answers to the following calculations below: 1. Standard Deviation (Sx) 2. T Values (t0.05,4) 3. 95% Confidence Interval (mmol/L) 4. [Na+] (mg/100 mL) 5. 95% Confidence Interval (mg/100 mL)arrow_forward
- If we have leucine (2-amino-4-methylpentanoic acid), alanine (2-aminopropanoic acid) and phenylalanine (2-amino-3-phenylpropanoic acid), indicate the tripeptides that can be formed (use the abbreviated symbols Leu., Ala and Phe).arrow_forwardBriefly state why trifluoroacetic acid is more acidic than acetic acid.arrow_forwardExplain why acid chlorides are more reactive than amides in reactions with nucleophiles.arrow_forward
- Calculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 101.7 mL of a 0.3500M solution of piperidine (C5H10NH) with a 0.05700M solution of HClO4. The pK of piperidine is 2.89. Calculate the pH of the base solution after the chemist has added 682.9 mL of the HClO solution to it. 4 Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HClO solution added. 4 Round your answer to 2 decimal places. pH = .11 00. 18 Ararrow_forwardThe following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 340.0 262.7 QUESTION: For both groups of data provide answers to the calculations attached in the imagearrow_forward7. Concentration and uncertainty in the estimate of concentration (class data) Class mean for sample (Regular) |[Cl-] (mmol/L) class mean Sn za/2 95% Confidence Interval (mmol/L) [Na+] (mg/100 mL) 95% Confidence Interval (mg/100 mL)arrow_forward
- The following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forwardGive reason(s) for six from the followings [using equations if possible] a. Addition of sodium carbonate to sulfanilic acid in the Methyl Orange preparation. b. What happened if the diazotization reaction gets warmed up by mistake. c. Addition of sodium nitrite in acidified solution in MO preparation through the diazotization d. Using sodium dithionite dihydrate in the second step for Luminol preparation. e. In nitroaniline preparation, addition of the acid mixture (nitric acid and sulfuric acid) to the product of step I. f. What is the main reason of the acylation step in nitroaniline preparation g. Heating under reflux. h. Fusion of an organic compound with sodium. HAND WRITTEN PLEASEarrow_forwardedict the major products of the following organic reaction: u A + ? CN Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. Х © 2025 McGraw Hill LLC. All Rights Reserved. Te LMUNDARYarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY