![Organic Chemistry, Books a la Carte Edition (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780134074580/9780134074580_largeCoverImage.gif)
Concept explainers
a)
Interpretation:
The most reactive compound in an electrophilic
Concept Introduction:
Effect of an electron withdrawing or an electron releasing group:
The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall
Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.
b)
Interpretation:
The least reactive compound in an electrophilic aromatic substitution reaction for each row of substituted benzenes has to be predicted.
Concept Introduction:
Effect of an electron withdrawing or an electron releasing group:
The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall rate of reactions.
Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.
c)
Interpretation:
The compound that yields the highest percentage of a meta product in an electrophilic aromatic substitution reaction for each horizontal row of substituted benzenes has to be stated.
Concept Introduction:
Effect of an electron withdrawing or an electron releasing group:
The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall rate of reactions.
Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 18 Solutions
Organic Chemistry, Books a la Carte Edition (8th Edition)
- 3. Consider the compounds below and determine if they are aromatic, antiaromatic, or non-aromatic. In case of aromatic or anti-aromatic, please indicate number of I electrons in the respective systems. (Hint: 1. Not all lone pair electrons were explicitly drawn and you should be able to tell that the bonding electrons and lone pair electrons should reside in which hybridized atomic orbital 2. You should consider ring strain- flexibility and steric repulsion that facilitates adoption of aromaticity or avoidance of anti- aromaticity) H H N N: NH2 N Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic TT electrons Me H Me Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic πT electrons H HH…arrow_forwardA chemistry graduate student is studying the rate of this reaction: 2 HI (g) →H2(g) +12(g) She fills a reaction vessel with HI and measures its concentration as the reaction proceeds: time (minutes) [IH] 0 0.800M 1.0 0.301 M 2.0 0.185 M 3.0 0.134M 4.0 0.105 M Use this data to answer the following questions. Write the rate law for this reaction. rate = 0 Calculate the value of the rate constant k. k = Round your answer to 2 significant digits. Also be sure your answer has the correct unit symbol.arrow_forwardNonearrow_forward
- in which spectral range of EMR, atomic and ionic lines of metal liesarrow_forwardQ2: Label the following molecules as chiral or achiral, and label each stereocenter as R or S. CI CH3 CH3 NH2 C CH3 CH3 Br CH3 X &p Bra 'CH 3 "CH3 X Br CH3 Me - N OMe O DuckDuckarrow_forward1. For the four structures provided, Please answer the following questions in the table below. a. Please draw π molecular orbital diagram (use the polygon-and-circle method if appropriate) and fill electrons in each molecular orbital b. Please indicate the number of π electrons c. Please indicate if each molecule provided is anti-aromatic, aromatic, or non- aromatic TT MO diagram Number of π e- Aromaticity Evaluation (X choose one) Non-aromatic Aromatic Anti-aromatic || ||| + IVarrow_forward
- 1.3 grams of pottasium iodide is placed in 100 mL of o.11 mol/L lead nitrate solution. At room temperature, lead iodide has a Ksp of 4.4x10^-9. How many moles of precipitate will form?arrow_forwardQ3: Circle the molecules that are optically active: ДДДДarrow_forward6. How many peaks would be observed for each of the circled protons in the compounds below? 8 pts CH3 CH3 ΤΙ A. H3C-C-C-CH3 I (₁₁ +1)= 7 H CI B. H3C-C-CI H (3+1)=4 H LIH)=2 C. (CH3CH2-C-OH H D. CH3arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780618974122/9780618974122_smallCoverImage.gif)