![ENGINEERING FUNDAMENTALS](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337705011/9781337705011_smallCoverImage.gif)
Concept explainers
Investigate the meaning of numerical analysis and give its examples.
![Check Mark](/static/check-mark.png)
Explanation of Solution
In order to obtain the numerical solutions for the mathematical problems, numerical analysis is used. In the field of engineering and physics, numerical analysis plays a vital role.
Give the areas of study of numerical analysis as below.
- Value of functions
- Solving system of linear equations
- Differential equation
- Integral
- Eigen values and
vectors
Value of functions:
The function of numerical analysis includes square root, cube root, logarithmic etc.
Example:
Let us consider the value,
Square root:
The square root of
Cube root:
The cube root of
Logarithmic function:
The logarithmic value of
Solving system of linear equations:
It is a collection of two or more linear equation involves same set of variables.
Consider the linear equation as follows:
Solve equation (1) and (2)
Multiply equation (1) by
Therefore equation (2) becomes,
Solve equation (2) and (4)
Multiply equation (1) by
Therefore equation (1) becomes,
Solve equation (6) and (3)
Solve equation (5) and (7)
Multiply equation (7) by
Therefore equation (7) becomes,
Solve equation (5) and (8)
Substitute
Substitute
Therefore, the solution is
Differential equation:
The differential equation is the equation which contains functions of derivatives represents their rate of change.
Let us consider the equation as follows:
Differentiate equation (9) with respect to
Therefore equation (9) becomes:
Thus, the rate of change of equation (9) is
Integral:
Integral calculus is the development of differential calculus. It is used to find the displacement, moment of inertia, area and volume in the mathematical concepts.
The indefinite integral can be represented by,
Let us consider the function,
Substitute
Eigen values and Eigen vectors:
The Eigen value is a non-zero vector that changes by a scalar factor when the linear transformation is applied.
Consider the Eigen value problem:
Here,
Consider the matrix A as follows:
The Eigen value of the matrix can be calculated by,
Here,
Substitute
Solve the equation (13)
Reduce equation (14) as follows,
The Eigen values are,
Eigen vectors for the Eigen value can be calculated as follows:
Substitute
Reduce the equation (16) as follows,
Write the matrix form of equation (17) into linear equation as follows,
Solving equation (18) and (19)
Therefore, the Eigen vector of
Eigen vectors for the Eigen value can be calculated as follows:
Substitute
Reduce the equation (16) as follows,
Write the matrix form of equation (22) into linear equation as follows,
Solving equation (23) and (24)
Therefore, the Eigen vector of
Conclusion:
Thus, the numerical analysis and its examples are explained.
Want to see more full solutions like this?
Chapter 18 Solutions
ENGINEERING FUNDAMENTALS
- Example 4 For the transverse interior frame (Frame C) of the flat plate floor with edge beams shown in Figure, by using the Direct Design Method, find: 1) Longitudinal distribution of total static moment at factored loads. 2) Lateral distribution of moment at interior panel (column and middle strip moments atnegative and positive moments). 3) Lateral distribution of moment at exterior panel (column and middle strip moments atnegative and positive moments). Plat 5000-5000 5000 -Frame C لا بوجود deen 0009 0009 Slab thickness = 180 mm, d = 150 mm q₁ = 16.0 kN/m² All edge beams = 250x 500 mm All columns = 500x 500 mm 6000arrow_forwards الله + 600 2 Example 5 For the exterior longitudinal frame (Frame B) of the flat plate floor shown in figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at exterior panel (column and middle strip moments at exterior support) Slab thickness = 175 mm, d=140 mm qu=14.0 kN/m² All columns = 600x 400 mm 916 *5000*5000*5000* B Sinter line 16400- 6400 -6400-arrow_forwardExample 8 For the longitudinal frame of the flat slab floor shown in figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at exterior panel (column and middle strip moments at exterior support) qu 18.0 kN/m² edge beams: 300×600 mm 5000 mm CL Panel 6000 واجب 750 750- 400 099- 5000 mm +2000+ CL Panel 1120 Drop Panal Cobum Cop 250 احول دائري الى توسيع احلة $400mm face to face 6000 mmarrow_forward
- Example 9 For the the transverse exterior frame (Frame D) of the flat plate floor, without edge beams, shown in Figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at interior panel (column and middle stripmoments at negative and positive moments). Slab thickness = 180 mm, d = 150 mm qu= 15.0 kN/m², All columns = 400×400 mm 5.0 m- 5.0- 5.0- نصف عرف العمود 6.0 marrow_forwardExample 7 For the transverse frame of the flat slab floor shown in figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at exterior panel (column and middle strip moments atexterior support) Flit D = 7.0 kN/m² L = 4.0 kN/m² 3000- 5000 -160 +1000+ 5000 009- 300-1000arrow_forwardDetermine the amount of rebar needed for the spread footing where the dowels extend 24 inches into the column allow for 3 inches of concrete coverarrow_forward
- Consider the forces acting on the handle of the wrench in Figure 1arrow_forwardThe following table gives the variation of the field standard penetration number (№60) in a sand deposit: Depth (m) N60 1.5 6 3.0 14 4.5 14 6.0 19 17 7.5 9.0 23 The groundwater table is located at a depth of 12 m. The dry unit weight of sand from 0 to a depth of 12 m is 17.6 kN/m³. Assume the mean grain size (D 50) of the sand deposit to be about 0.8 mm. Estimate the variation of the relative density with depth for sand. Use the equation N60 (0.23 +0.06/D50) 1.7 1 Dr (%) = 9 σ'o/Pa (Enter your answers to three significant figures.) Depth (m) N60 Dr (%) 1.5 6 3.0 14 4.5 14 6.0 19 7.5 17 9.0 23 0.5 (100)arrow_forward00 N 50° W NAZ 310 Length & plane Survey! E Х A (9 13arrow_forward
- A cone penetration test was carried out in normally consolidated sand, for which the results are summarized below: Depth (m) Cone resistance, qc (MN/m²) 2.0 3.5 5.0 6.5 8.0 4.02 5.15 6.04 10.13 13.10 The average unit weight of the sand is 16.5 kN/m³. Assume moderately compressible sand and hence Q Determine the relative density at each depth using the equation below. Dr = 1 305QOCR1.8 Яс Pa 0.5 0 Pa (Enter your answers to three significant figures.) Depth (m) Dr (%) 2.0 3.5 5.0 6.5 8.0 = 1.arrow_forwardA vane shear test was conducted in a saturated soft clay, using a 100 mm x 260 mm vane. When the vane was rotated at the standard rate of 0.1°/s, the torque measured in the torque meter increased to 60 N. m, and with further rotation reduced to 35 N. m. Determine the peak and residual undrained shear strengths of the clay. (Enter your answers to three significant figures.) Peak undrained shear strength Residual undrained shear strength = kN/m² kN/m²arrow_forwardFollowing is the variation of the field standard penetration number (№60) in a sand deposit: Depth (m) Neo N60 1.5 6 3 8 4.5 9 6 8 7.5 9 13 14 The groundwater table is located at a depth of 6 m. Given: the dry unit weight of sand from 0 to a depth of 6 m is 19 kN/m³, and the saturated unit weight of sand for depth 6 to 12 m is 20.2 kN/m³. Estimate an average peak soil friction angle. Use the equation CN - [ 1 (o'o/Pa). 0.5 (Enter your answer to three significant figures.) $' =arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285852225/9781285852225_smallCoverImage.gif)