![ENGINEERING FUNDAMENTALS](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337705011/9781337705011_smallCoverImage.gif)
Concept explainers
Estimate the air temperatures and corresponding speeds of sound at altitudes of
![Check Mark](/static/check-mark.png)
Answer to Problem 35P
The air temperatures and corresponding speeds of sound at altitudes of
Explanation of Solution
Given data:
Refer to Table given in problem 18.35 in textbook,
The air temperature at altitude
The air temperature at altitude
The speed of sound at altitude
The speed of sound at altitude
The air temperature at altitude
The air temperature at altitude
The speed of sound at altitude
The speed of sound at altitude
Formula used:
Formula for the linear interpolation is,
Calculation:
To find the air temperature at altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (2) can be reduced as follows,
Reduce the equation as follows,
Therefore, the air temperature at an altitude
To find the speed of sound at an altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (3) can be reduced as follows,
Reduce the equation as,
Therefore, the approximate value of speed of sound at an altitude
To find the air temperature at altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (4) can be reduced as follows
Reduce the equation as follows,
Therefore, the air temperature at an altitude
To find the speed of sound at an altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (5) can be reduced as follows
Reduce the equation as follows,
Therefore, the approximate value of speed of sound at an altitude
Conclusion:
Thus, the air temperatures and corresponding speeds of sound at altitudes of
Want to see more full solutions like this?
Chapter 18 Solutions
ENGINEERING FUNDAMENTALS
- Olin's Construction: Principles, Materials, and Methods By H. Leslie Simmonsarrow_forwardThe L6 x 4 x 1/2 single angle shown has two rows of bolts. Each leg has one row (one line) of 5/8 in bolts in each leg as shown. Determine the net area (An). If needed, I attached the section properties from AISC manual for L6x4x1/2.arrow_forward3. Determine the reactions at the supports for the frame shown in following. 36.5 kN/m 14.6 kN/m Hinge R = 10 m 10 m -10 marrow_forward
- # 4 F3 Existing Flocculation Basin Design Parameters at 22.5 MGD: A) # of Basins: 5 B) # of Stages per Basin: 2 c) Basin Dimensions: (30 ft. X 4 ft. X 15 ft.) D) Volume per Basin 10,800 cf (80,787 Gal) E) Total Flocculation Volume: 54,000 cf (406,920 Gal) F) Theoretical Unit Detention Time: 25.9 minutes G) Flow through Velocity (Q): 1.16 ft/min Deliverables: 1) Determine if the existing flocculation basins are sufficient to accommodate the projected future capacity. A) Current Capacity: 22.5 MGD B) Future Capacity: 34.5 MGD for 110,000 residents C) If not, determine the number of additional flocculation basins needed to accommodate the future capacity of 34.5 MGD. a) Ignore this bullet point 2) Specify the basic dimensions (length, width, water height, weir dimensions, etc.) of these additional flocculation basins. 3) Specify the design flow rate, detention time, and the flow-through velocity for each basin under the maximum future capacity of 34.5 MGD, assuming one of the basins is…arrow_forwardA1.4- Determine the factored moment resistance for the flanged beam (simply supported) shown in Figure 4. Given: Beam span L = 8m fc = 25MPa fy=400MPa As = 3-35M *350* mm 1.5 m Figure 4 *350* mm -60mmarrow_forwardA2.3- a simply supported reinforced concrete beam of rectangular cross-section is shown in Figure 3. The beam supports a uniform dead load of 20 kN/m (excluding the beam self-weight) and a uniform live load of 20 kN/m. The beam width is restricted to 400 mm. The maximum aggregate size is 20 mm. We are using 10M bars for stirrups and 25M bars for tension steel. Concrete is type N with f'c = 35 MPa and fy = 400 MPa. The beam needs to have 2hr fire rating. Design the beam for the given load, considering the reinforcement ratio p < 0.5 pb Figure 3 WDL = 20 kN/m WLL= 20 kN/m 8.0 marrow_forward
- A2.2- For the given reinforced concrete section shown in Figure 2, a) Determine the balanced reinforced amount for this section; b) Calculate the ultimate moment resistance of the section if As = 8-20M. What is the mode of failure? c) Calculate the ultimate moment resistance of the section if As = 8-30M. Determine the strain in the steel reinforcement. Given: fc 30 MPa fy = 400 MPa 625 mm 500 mm + + *. 400 mm Figure 2arrow_forwardA2.1- For a reinforced concrete beam (typical cross-section is shown in Figure 1), a) Determine the maximum moment that this beam can resist before cracking; b) Determine the beam moment of inertia after cracking. Given: The beam is reinforced with 4-25M longitudinal bars f'c = 35 MPa fy = 400 MPa 600 mm 530 mm + * 400 mm * Figure 1arrow_forwardCalculate the number of 8 x 8 x 16 inch blocks needed to complete the wall overhead doors 10 x 12 ft high If Lintel blocks are required wherever the #4 horizontal bars are located and above the doors how many plain blocks and how many lintel blocks are needed for the wall. Show all calculationsarrow_forward
- Calculate the quantity of cubic yards needed for the spread footing usinf a waste factor of 10% Determine the amount of rebar needed for the spread footing, dowels extend 24 inches into the colum Allow for 3 inch concrete cover Show all work pleasearrow_forwarda. Determine the effective area for the case shown in the figure below. Suppose that l = 4 in. For L5 x 5 x 5/8: Ay = 5.90 in.², = 1.47 in. L5 × 5 × 58 Weld (Express your answer to three significant figures.) A₂ = 6.25 in.2 b. Determine the effective area for the case shown in the figure below. Suppose that = 4 in. PL38 x 4 Weld (Express your answer to three significant figures.) A₁ = in.2 c. Determine the effective area for the case shown in the figure below. PL³/8 x 5 Weld (Express your answer to three significant figures.) in, 2 A₁ = d. Determine the effective area for the case shown in the figure below. PL/2 × 51/2 оо 3/4-in.-diam. bolts (Express your answer to three significant figures.) A₂ = in.2 e. Determine the effective area for the case shown in figure below. PL³½ x 6 7/8-in.-diam. bolts (Express your answer to three significant figures.) Ae in.2arrow_forwardAn American Standard Channel shape must resist a factored tensile load. The length is 15 ft, and there will be two lines of 7/8-in. diameter bolts in the web, as shown in the figure below. Estimate the shear lag factor U to be 0.85. (In a practical design, once the member and bolt layout are selected, the value of U could be computed and the member design could be revised if necessary.) Use A36 steel. For the steel Fy = 36 ksi and F₁ = 58 ksi. Try the tension members given in the table below. Tension member A, (in.²) tw (in.) ry (in.) C10 x 20 5.87 0.379 0.690 C3 × 6 1.76 0.356 0.413 C6 × 8.2 2.39 0.200 0.536 C5 × 9 2.64 0.325 0.486 Bolt lines Select an American Standard Channel shape to resist a factored tensile load of 120 kips. A) C10 × 20 B) C3 × 6 C) C6 x 8.2 D) C5 x 9 -Select- V What is the required gross area? (Express your answer to three significant figures.) Ag = in.2 What is the required effective area? (Express your answer to three significant figures.) Ae = in.2 What is…arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)