(a)
Interpretation:
Major product formed when chlorobenzene reacts with fuming sulfuric acid has to be given.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in
aromatic compounds . Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions. - Benzene is an electron rich aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene carbon are electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene carbon are electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
(b)
Interpretation:
Major product formed when phenol reacts with fuming sulfuric acid has to be given.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene carbon are electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene carbon are electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
(c)
Interpretation:
Major product formed when benzaldehyde reacts with fuming sulfuric acid has to be given.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene carbon are electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene carbon are electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
(d)
Interpretation:
Major product formed when ortho–nitrophenol reacts with fuming sulfuric acid has to be given.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene carbon are electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene carbon are electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
(e)
Interpretation:
Major product formed when para–bromotoluene reacts with fuming sulfuric acid has to be given.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene carbon are electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene carbon are electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
(f)
Interpretation:
Major product formed when benzoic acid reacts with fuming sulfuric acid has to be given.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene carbon are electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene carbon are electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
(g)
Interpretation:
Major product formed when para-ethyltoluene reacts with fuming sulfuric acid has to be given.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene carbon are electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene carbon are electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.

Want to see the full answer?
Check out a sample textbook solution
Chapter 18 Solutions
ORGANIC CHEMISTRYPKGDRL+MLCRL MDL
- Which region(s) of the following phospholipid is/are hydrophobic? RO I hydro-water phobic-dislikes = Hydrophobic dislikes water ○ I only Il only I and III only II and IV only O II, III, and IV only III || IVarrow_forwardPredict the product of the following reactions: O 0= excess Х Кон ОН H+ H+ Iarrow_forwardHow many chiral centers/stereocenters are there in the following molecule? 1 2 3 4arrow_forward
- Which of these correspond to the molecule: 2,5-dimethylheptanearrow_forwardGiven the following data, determine the order of the reaction with respect to H2. H2(g) + 21Cl(g) → I2(g) + 2HCl(g) Experiment [H2] (torr) [ICI] (torr) Rate (M/s) 1 250 325 0.266 2 250 81 0.0665 3 50 325 0.266arrow_forwardWhich one of the following molecules is chiral? H- NH₂ H3C དང་།་ OH H HO H₂N HO- -H CHO -OH H HO- OH H- -H CH₂OH OHarrow_forward
- The structure of an unsaturated phospholipid is shown below. Which region of the molecule is most hydrophilic ? H₂N-CH₂ H₂C IV CH3 CH3 hydro-water philic-likes = Hydrophilic likes water ○ IV All regions are equally hydrophilic. IIIarrow_forwardWhich of the following compounds would you most appropriately call hydrophobic? ○ CH4 H2CO CO HCI ○ NaClarrow_forwardWhich of the following triglycerides would you most expect to be a liquid at room temperature? saturated fat trans monounsaturated fat trans polyunsaturated fat cis monounsaturated fat ○ cis polyunsaturated fatarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





