Concept explainers
Estimate the air temperatures and corresponding speeds of sound at altitudes of
Answer to Problem 35P
The air temperatures and corresponding speeds of sound at altitudes of
Explanation of Solution
Given data:
Refer to Table given in problem 18.35 in textbook,
The air temperature at altitude
The air temperature at altitude
The speed of sound at altitude
The speed of sound at altitude
The air temperature at altitude
The air temperature at altitude
The speed of sound at altitude
The speed of sound at altitude
Formula used:
Formula for the linear interpolation is,
Calculation:
To find the air temperature at altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (2) can be reduced as follows,
Reduce the equation as follows,
Therefore, the air temperature at an altitude
To find the speed of sound at an altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (3) can be reduced as follows,
Reduce the equation as,
Therefore, the approximate value of speed of sound at an altitude
To find the air temperature at altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (4) can be reduced as follows
Reduce the equation as follows,
Therefore, the air temperature at an altitude
To find the speed of sound at an altitude
The diagrammatic representation for the given value is drawn below,
Substitute
Equation (5) can be reduced as follows
Reduce the equation as follows,
Therefore, the approximate value of speed of sound at an altitude
Conclusion:
Thus, the air temperatures and corresponding speeds of sound at altitudes of
Want to see more full solutions like this?
Chapter 18 Solutions
EP WEBASSIGN FOR MOAVENI'S ENGINEERING
- Assignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardA1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forwardPlease show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forward
- Find required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward•Two types of concrete storm water drains are comparing: 1-pipe diameter 2m running full. 2-open channel rectangular profile, bottom width 2m and water depth 1.0 m. The drains are laid at gradient of %1.0; manning coefficient=0.013. Determine the velocity of flow and discharge rate for the circular drain. Determine the velocity of flow and discharge rate for the rectangular open culvert.arrow_forward
- A1.2- For the frame shown in Figure 2, draw the bending moment, shear force, and axial force diagrams for the shown factored loading case. Note: All loads indicated in Figure 2 are already factored. W₁ = 25 kN/m Figure 2 777 6.0 m M= 10 kN.m P₁ = 20 kN 2.5 marrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forward
- Please calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease answer the following and show me the step by step soarrow_forwardPlss answer the following show me the solution step bg steparrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning