![Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics](https://www.bartleby.com/isbn_cover_images/9780321976932/9780321976932_largeCoverImage.gif)
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
10th Edition
ISBN: 9780321976932
Author: YOUNG
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 35P
You make a capacitor by cutting the 15.0-cm-diameter bottoms out of two aluminum pie plates, separating them by 3.50 mm, and connecting them across a 6.00 V battery. (a) What’s the capacitance of your capacitor? (b) If you disconnect the battery and separate the plates to a distance of 3.50 cm without discharging them, what will be the potential difference between them?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
No chatgpt pls will upvote Already got wrong chatgpt answer
An electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c)
and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas.
Momentum (MeV/c)
relativistic
classical
electron
proton
Kinetic Energy (MeV)
Four capacitors are connected as shown in the figure below. (Let C = 20.0 µF.)
(a) Find the equivalent capacitance between points a and b.
µF
(b) Calculate the charge on each capacitor, taking ΔVab = 14.0 V.
20.0 µF capacitor
µC
6.00 µF capacitor
µC
3.00 µF capacitor
µC
capacitor C
µC
Chapter 18 Solutions
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
Ch. 18 - Why must electric field lines be perpendicular to...Ch. 18 - Which way do electric field lines point, from high...Ch. 18 - If the electric field is zero throughout a certain...Ch. 18 - The potential (relative to a point at infinity)...Ch. 18 - A capacitor is charged by being connected to a...Ch. 18 - A capacitor is charged by being connected to a...Ch. 18 - Two parallel-plate capacitors, identical except...Ch. 18 - The two plates of a capacitor are given charges Q,...Ch. 18 - Liquid dielectrics having polar molecules (such as...Ch. 18 - To store the maximum amount of energy in a...
Ch. 18 - You have two capacitors and want to connect them...Ch. 18 - You have three capacitors, not necessarily equal,...Ch. 18 - A surface will be an equipotential surface if...Ch. 18 - In Figure 18.31, point P is equidistant from both...Ch. 18 - For the capacitor network shown in Figure 18.32, a...Ch. 18 - Two charges are placed on the x axis. A charge of...Ch. 18 - Two point charges with charge +q are initially...Ch. 18 - If the potential (relative to infinity) due to a...Ch. 18 - If the electric potential energy of two point...Ch. 18 - An electron is released between the plates of a...Ch. 18 - The plates of a parallel-plate capacitor are...Ch. 18 - When a certain capacitor carries charge of...Ch. 18 - Two large metal plates carry equal and opposite...Ch. 18 - The electric potential (relative to infinity) due...Ch. 18 - A charge of 28.0 nC is placed in a uniform...Ch. 18 - Two very large charged parallel metal plates are...Ch. 18 - How far from a 7.20 C point charge must a +2.30 C...Ch. 18 - A point charge q1 = +2 40 C is held stationary at...Ch. 18 - Two stationary point charges of +3.00 nC and +2.00...Ch. 18 - A set of point charges is held in place at the...Ch. 18 - Three equal 1.20 C point charges are placed at the...Ch. 18 - When two point charges are a distance R apart,...Ch. 18 - Two large metal parallel plates carry opposite...Ch. 18 - A potential difference of 4.75 kV is established...Ch. 18 - BIO Axons. Neurons are the basic units of the...Ch. 18 - BIO Electrical sensitivity of sharks. Certain...Ch. 18 - A particle with a charge of +4 20 nC is in a...Ch. 18 - Two very large metal parallel plates are 20.0 cm...Ch. 18 - A uniform electric field has magnitude E and is...Ch. 18 - A point charge is sitting at the origin. The...Ch. 18 - An electron is to be accelerated from 3.00 108...Ch. 18 - A small particle has charge 5.00 C and mass 2.00 ...Ch. 18 - Two point charges q1 = +2.40 nC and q2 = 6.50 nC...Ch. 18 - A point charge Q = +4.00 C is held fixed al the...Ch. 18 - Two protons are released from rest when they are...Ch. 18 - x-ray tube. An x-ray tube is an evacuated glass...Ch. 18 - A parallel-plate capacitor having plates 6.0 cm...Ch. 18 - Two very large metal parallel plates that are 25...Ch. 18 - (a) A +5.00 C charge is located on a sheet of...Ch. 18 - A +1.50 C point charge is sitting at the origin....Ch. 18 - Dipole. A dipole is located on a sheet of paper....Ch. 18 - (a) You find that if you place charges of 1.25 C...Ch. 18 - The plates of a parallel-plate capacitor are 3.28...Ch. 18 - The plates of a parallel-plate capacitor are 2.50...Ch. 18 - A parallel-plate air capacitor has a capacitance...Ch. 18 - Suppose you were to design a 1 F parallel-plate...Ch. 18 - A 10.0 F parallel-plate capacitor with circular...Ch. 18 - A 10.0 F parallel-plate capacitor is connected to...Ch. 18 - You make a capacitor by cutting the...Ch. 18 - A 5.00 pF parallel-plate air-filled capacitor with...Ch. 18 - A disk-shaped parallel-plate capacitor has a...Ch. 18 - A parallel-plate capacitor C is charged up to a...Ch. 18 - For the system of capacitors shown in Figure...Ch. 18 - Electric eels. Electric eels and electric fish...Ch. 18 - In Figure 18.39, C1 = 6.00 f, C2 = 3.00 F. and C3...Ch. 18 - You are working on an electronics pro.ect that...Ch. 18 - In Figure 18 39, C1 = 3.00 F anri Vab = 120 V. The...Ch. 18 - A 4.00 F and a 6.00 F capacitor are wired in...Ch. 18 - In the circuit shown in Figure 18.40, the...Ch. 18 - In Figure 18.41 each capacitor has C = 4.00 f and...Ch. 18 - Figure 18.42 shows a system of four capacitors...Ch. 18 - For the system of capacitors shown in Figure...Ch. 18 - How much charge does a 12 V battery have to supply...Ch. 18 - A 5.80 F parallel-plate air capacitor has a plate...Ch. 18 - (a) How much charge does a battery have to supply...Ch. 18 - In the text, it was shown that the energy stored...Ch. 18 - A parallel-plate vacuum capacitor has 8.38 J of...Ch. 18 - A 5.00 nF parallel-plate capacitor contains 25.0 J...Ch. 18 - For the capacitor network shown in Figure 18.44,...Ch. 18 - For the capacitor network shown in Figure 18.45,...Ch. 18 - For the capacitor network shown in Figure 18.46,...Ch. 18 - A parallel-plate air capacitor has a capacitance...Ch. 18 - Cell membranes. Cell membranes (the walled...Ch. 18 - A parallel-plate capacitor is to be constructed by...Ch. 18 - A 12.5 F capacitor is connected to a power supply...Ch. 18 - The paper dielectric in a paper-and-foil capacitor...Ch. 18 - A constant potential difference of 12 V is...Ch. 18 - (a) If a spherical raindrop of radius 0.650 mm...Ch. 18 - At a certain distance from a point charge, the...Ch. 18 - Two oppositely charged identical insulating...Ch. 18 - A positive point charge Q is placed at a position...Ch. 18 - An alpha particle with a kinetic energy of 10.0...Ch. 18 - In the Bohr model of the hydrogen atom, a single...Ch. 18 - A proton and an alpha particle are released from...Ch. 18 - A parallel-plate air capacitor is made from two...Ch. 18 - In the previous problem, suppose the battery...Ch. 18 - A capacitor consists of two parallel plates, each...Ch. 18 - Electronic flash units for cameras contain a...Ch. 18 - In Figure 18.49, each capacitance C1 is 6.9 F and...Ch. 18 - Prob. 76PPCh. 18 - A helium ion (He++) that comes within about 10 fm...Ch. 18 - The maximum voltage at the center of a typical...Ch. 18 - How many moles of Na+ must move per unit area of...Ch. 18 - Prob. 80PPCh. 18 - Suppose that the change in Vm was caused by the...Ch. 18 - What is the minimum amount of work that must be...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Which reactions are redox reactions? a. Al(s)+3Ag+(aq)Al3+(aq)+3Ag(s) b. 4K(s)+O2(g)2K2O(s) c. SO3(g)+H2O(l)H2S...
Introductory Chemistry (6th Edition)
What global policy changes and what individual choices can help us sustain the planet that sustains us?
Biology: Life on Earth with Physiology (11th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Thank you.arrow_forward6. Is the true pendulum an example of SHM? Explain.arrow_forwardIn the circuit shown below & = 66.0 V, R5 = 4.00, R3 = 2.00, R₂ = 2.20 ₪, I5 = 11.41 A, I₁ = 10.17 A, and i̟ = 6.88 A. Find the current through R2 and R3, and the values of the resistors R₁ and R. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) 12 = 8.12 8.12 13 R₁₁ = RA = A Based on the known variables, which two junctions should you consider to find the current I3? A 6.9965 61.5123 Ω Which loop will give you an equation with just R4 as the unknown? Did you follow the sign convention for the potential difference across each element in the loop? R₁ www 11 R₂ www R4 www 14 8 15 www R5 www R3arrow_forward
- A car traveling at 42 km/h hits a bridge abutment. A passenger in the car moves forward a distance of 53 cm (with respect to the road) while being brought to rest by an inflated air bag. What magnitude of force (assumed constant) acts on the passenger's upper torso, which has a mass of 43 kg? Number i Unitsarrow_forwardThree resistors R₁ = 88.1 Q, R2 = 19.9 £2, R3 = 70.00, and two batteries & ₁ = 40.0 V, and ε2 = 353 V are connected as shown in the diagram below. R₁ www E₁ E2 R₂ ww ww R3 (a) What current flows through R₁, R2, and R3? 11 = 0.454 Did you choose directions for each of the three currents? Given that you have three unknowns to solve for, how many equations, at the least, will you need? A 12 = 1.759 Did you choose directions for each of the three currents? Given that you have three unknowns to solve for, how many equations, at the least, will you need? A 13 2.213 = Did you choose directions for each of the three currents? Given that you have three unknowns to solve for, how many equations, at the least, will you need? A (b) What is the absolute value of the potential difference across R1, R2, and R3? |AVR1 = 40.0 How is the potential difference related to the current and the resistance? V |AVR2 = 35.0 How is the potential difference related to the current and the resistance? V |AVR3 =…arrow_forwardIn the attached image is the circuit for what the net resistance of the circuit connected to the battery? Each resistance in the circuit is equal to 14.00 kΩ. Thanks.arrow_forward
- Determine the equivalent capacitance for the group of capacitors in the drawing. Assume that all capacitors be the same where C = 24.0 µF. Thank you.arrow_forwardIn the figure below, what is the net resistance of the circuit connected to the battery? Assume that all resistances in the circuit is equal to 14.00 kΩ. Thank you.arrow_forwardDue to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations. 3 4 Find the currents flowing in the circuit in the figure below. (Assume the resistances are R₁ =6, R₂ = 20, R₂ = 10 N, R₁ = 8, r₁ = 0.75 0, r2=0.50, 3 × A × A I, = 3.78 12 13 = 2.28 = 1.5 × A R₁ b a R₁₂ w C 1, 12 13 R₂ E3 12 V E₁ 18 V g Ez 3.0 V 12 Ea شرة R₁ e 24 V d = 0.25 0, and 4 = 0.5 0.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY