
Concept explainers
(a)
The transition in the Balmer series which produces the smallest frequency photon.
(a)

Answer to Problem 2SP
The transition in the Balmer series which produces the smallest frequency photon is
Explanation of Solution
Hydrogen spectrum lies in the visible, ultraviolet as well as infrared regions. Hydrogen spectrum is divided into different spectral series named as Lyman series, Balmer series, Paschen series, Brackett series and Pfund series. The wavelengths of lines in each series is determined using Balmer’s formula.
The Balmer’s formula is given as
From the Balmer’s formula it is clear that the photon having smallest frequency or longest wavelength will be emitted when the value of
Conclusion:
Thus the
(b)
The energy difference in joules for the two levels involved in the transition of part (a).
(b)

Answer to Problem 2SP
The energy difference in joules for the two levels involved in the transition of part (a) is
Explanation of Solution
Write the Balmer’s formula.
The value of
Substitute
Write the equation for the energy of a photon.
Here,
The value of
Substitute
The energy of the emitted photon is equal to the energy difference between the levels involved in the transition.
Conclusion:
Thus the energy difference in joules for the two levels involved in the transition of part (a) is
(c)
The frequency and wavelength of the photon emitted in the transition.
(c)

Answer to Problem 2SP
The frequency of the photon emitted in the transition is
Explanation of Solution
From part (b),
This gives,
Write the equation for the frequency of the photon.
Here,
Substitute
Conclusion:
Thus the frequency of the photon emitted in the transition is
(d)
The frequency and wavelength of the photon with the longest wavelength in the Lyman series.
(d)

Answer to Problem 2SP
The frequency of the photon with the longest wavelength in the Lyman series is
Explanation of Solution
The value of
Substitute
This gives,
Substitute
Conclusion:
Thus the frequency of the photon with the longest wavelength in the Lyman series is
Want to see more full solutions like this?
Chapter 18 Solutions
The Physics of Everyday Phenomena
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





