The Physics of Everyday Phenomena
The Physics of Everyday Phenomena
8th Edition
ISBN: 9780073513904
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 2SP

(a)

To determine

The transition in the Balmer series which produces the smallest frequency photon.

(a)

Expert Solution
Check Mark

Answer to Problem 2SP

The transition in the Balmer series which produces the smallest frequency photon is m=3 to n=2.

Explanation of Solution

Hydrogen spectrum lies in the visible, ultraviolet as well as infrared regions. Hydrogen spectrum is divided into different spectral series named as Lyman series, Balmer series, Paschen series, Brackett series and Pfund series. The wavelengths of lines in each series is determined using Balmer’s formula.

The Balmer’s formula is given as 1λ=R(1n21m2) where λ is the wavelength of the line, n is an integer which represents a particular series or in other words n will be a constant for a particular series, m is another integer which will be always greater than n and R is the Rydberg constant. The value of n for Balmer series is 2.

From the Balmer’s formula it is clear that the photon having smallest frequency or longest wavelength will be emitted when the value of m is greater than n by just 1. This implies the value of m to produce the smallest frequency photon in the Balmer series should be 3.

Conclusion:

Thus the m=3 to n=2 transition produces the smallest frequency photon in the Balmer series.

(b)

To determine

The energy difference in joules for the two levels involved in the transition of part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 2SP

The energy difference in joules for the two levels involved in the transition of part (a) is 3.02×1019 J.

Explanation of Solution

Write the Balmer’s formula.

1λ=R(1n21m2) (1)

The value of R is 1.097×107 m1.

Substitute 1.097×107 m1 for R,2 for n and 3 for m in equation (1) to find (1/λ).

1λ=1.097×107 m1(122132)=1523611.1 m1

Write the equation for the energy of a photon.

E=hcλ

Here,

E is the energy of the photon

h is the Planck’s constant

c is the speed of light in vacuum

The value of h is 6.626×1034 Js and the value of c is 3.0×108 m/s.

Substitute 6.626×1034 Js for h,3.0×108 m/s for c and 1523611.1 m1 for (1/λ) in the above equation to find E.

E=(6.626×1034 Js)(3.0×108 m/s)(1523611.1 m1)=3.02×1019 J

The energy of the emitted photon is equal to the energy difference between the levels involved in the transition.

Conclusion:

Thus the energy difference in joules for the two levels involved in the transition of part (a) is 3.02×1019 J.

(c)

To determine

The frequency and wavelength of the photon emitted in the transition.

(c)

Expert Solution
Check Mark

Answer to Problem 2SP

The frequency of the photon emitted in the transition is 4.56×1014 Hz and the wavelength is 657 nm.

Explanation of Solution

From part (b),

1λ=1523611.1 m1

This gives,

λ=11523611.1 m1=657×109 m=657 nm

Write the equation for the frequency of the photon.

f=cλ (2)

Here,

f is the frequency of the photon

Substitute 3.0×108 m/s for c and 657×109 m for λ in equation (2) to find f.

f=3.0×108 m/s657×109 m=4.56×1014 Hz

Conclusion:

Thus the frequency of the photon emitted in the transition is 4.56×1014 Hz and the wavelength is 657 nm.

(d)

To determine

The frequency and wavelength of the photon with the longest wavelength in the Lyman series.

(d)

Expert Solution
Check Mark

Answer to Problem 2SP

The frequency of the photon with the longest wavelength in the Lyman series is 2.46×1015 Hz and its wavelength is 122 nm.

Explanation of Solution

The value of n for Lyman series is 1 so that the longest wavelength photon is emitted for the m=2 to n=1 transition.

Substitute 1.097×107 m1 for R,1 for n and 2 for m in equation (1) to find (1/λ).

1λ=1.097×107 m1(112122)=8227500 m1

This gives,

λ=1 8227500 m1=122×109 m=122 nm

Substitute 3.0×108 m/s for c and 122×109 m for λ in equation (2) to find f.

f=3.0×108 m/s122×109 m=2.46×1015 Hz

Conclusion:

Thus the frequency of the photon with the longest wavelength in the Lyman series is 2.46×1015 Hz and its wavelength is 122 nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning