
(a)
The direction in which the electron beam deflect as it passes between the plates bearing the potential difference.
(a)

Answer to Problem 1SP
The electrons will be deflected in the upward direction, which is toward the positive plate.
Explanation of Solution
The charge of electrons is negative. The electric field is directed from positive charge to the negative charge.
Any particle with negative charge, in an electric field experiences a force in the direction opposite to the direction of the electric field. This will result the particle to move in a direction opposite to the electric field.
In the given situation, the potential difference is set up between the two plates such that the positive plate is in the upper side and negative plate is in the lower side. Thus, the electric field will be directing in the downward direction.
Since the electrons are accelerated between these plates, the force on the electrons will be in the upward direction and hence they will get deflected in the upward direction.
Conclusion:
Therefore, the electrons will be deflected in the upward direction, which is toward the positive plate.
(b)
The electric field in the region between the plates.
(b)

Answer to Problem 1SP
The electric field in the region between the plates is
Explanation of Solution
Given info: The separation between the plates is
Write the expression between the potential difference in terms of electric field.
Here,
Solve for
Substitute
Conclusion:
Therefore, the electric field in the region between the plates is
(c)
The magnitude of force exerted on an individual electron by the electric field between the plates.
(c)

Answer to Problem 1SP
The magnitude of force exerted on an individual electron by the electric field between the plates is
Explanation of Solution
Given info: The electric field is
Electric field is the force exerted on a unit charge.
Write the expression for the electric field.
Here,
Solve for
The magnitude of charge of electron is
Substitute
Conclusion:
Therefore, the magnitude of force exerted on an individual electron by the electric field between the plates is
(d)
The magnitude and direction of the acceleration of the electron.
(d)

Answer to Problem 1SP
The electrons will have acceleration of
Explanation of Solution
Given info: The force on the electron is
Write the expression for the force on an object in terms of accelerations.
Here,
Solve for
The mass of electron is
Substitute
Since the force is acting on the upward direction, the acceleration will also be in the same direction. Thus, the electron will be accelerated in the upward direction.
Conclusion:
Therefore, the electrons will have acceleration of
(e)
The path followed by the electron when it passes through the potential difference.
(e)

Answer to Problem 1SP
The electron will follow a parabolic path towards the positively charged plate when it is accelerated between the plates.
Explanation of Solution
The trajectory of motion of a charged particle in an electric field is similar to the motion of a body in a constant gravitational field.
When the electron is accelerated between the charged plated beating a potential difference, the motion of the electron is deviated due to the force exerted by the electric field on the electron.
Since the electron experiences a force in the upward direction, offered by the electric field, it will follow a parabolic path towards the positively charged plate.
Conclusion:
Therefore, the electron will follow a parabolic path towards the positively charged plate when it is accelerated between the plates.
Want to see more full solutions like this?
Chapter 18 Solutions
The Physics of Everyday Phenomena
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





