COLLEGE PHYSICS:STRATEGIC APPR.AP ED.
4th Edition
ISBN: 9780137574728
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 27P
A fish in a flat-sided aquarium sees a can of fish food on the counter. To the fish’s eye, the can looks to be 30 cm outside the aquarium. What is the actual distance between the can and the aquarium? (You can ignore the thin glass wall of the aquarium.)
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:06
Students have asked these similar questions
A fish in a flat-sided aquarium sees a box of fish food on the counter. To the fish's eye, the can appears to be 30 cm outside the aquarium. What is the actual distance between the can and the aquarium? (You can ignore the thin glass wall of the aquarium.)
A fish in a flat-sided aquarium sees a container on the counter. To the fish’s eye, the container is 28 cm outside the aquarium. What is the actual distance between the container and the aquarium? Ignore the thin glass wall of the aquarium.
One end of the strip of a plane mirror is fixed and the other end rests on the top of the small vertical
rod. The length of the plane mirror strip is 25cm. A ray of light is incident on the mirror and reflected
from the mirror and forms a spot on a screen 3m away from the mirror. Now, if the top of the rod is
moved upwards 0.1 mm, then what will be movement of the spot?
A
0.24 cm
B
3.4 cm
5 cm
4.5 cm
Chapter 18 Solutions
COLLEGE PHYSICS:STRATEGIC APPR.AP ED.
Ch. 18 - Prob. 1CQCh. 18 - Can you see the rays from the sun on a clear day?...Ch. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - If you take a walk on a summer night along a dark,...Ch. 18 - You are looking at the image of a pencil in a...Ch. 18 - Prob. 7CQCh. 18 - In Manets A Bar at the Folies-Bergere (see Figure...Ch. 18 - Prob. 10CQCh. 18 - You are looking straight into the front of an...
Ch. 18 - Prob. 12CQCh. 18 - Prob. 13CQCh. 18 - Prob. 14CQCh. 18 - Prob. 15CQCh. 18 - A lens can be used to start a fire by focusing an...Ch. 18 - A piece of transparent plastic is molded into the...Ch. 18 - From where you stand one night, you see the moon...Ch. 18 - Prob. 20MCQCh. 18 - Prob. 21MCQCh. 18 - Is there an angle of incidence between 0 and 90...Ch. 18 - A 2.0-m-tall man is 5.0 m from the converging lens...Ch. 18 - You are 2.4 m from a plane mirror, and you would...Ch. 18 - As shown in Figure Q18.22, an object is placed in...Ch. 18 - Prob. 26MCQCh. 18 - Prob. 27MCQCh. 18 - The lens in Figure Q18 .25 is used to produce a...Ch. 18 - You look at yourself in a convex mirror. Your...Ch. 18 - A 5.0-ft-tall girl stands on level ground. The sun...Ch. 18 - Prob. 2PCh. 18 - A point source of light illuminates an aperture...Ch. 18 - Prob. 4PCh. 18 - It is 165 cm from your eyes to your toes. Youre...Ch. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 11PCh. 18 - An underwater diver sees the sun 50 above...Ch. 18 - A laser beam in air is incident on a liquid at an...Ch. 18 - Prob. 14PCh. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - Prob. 16PCh. 18 - A 4.0-m-wide swimming pool is filled to the top....Ch. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - A light ray travels inside a horizontal plate of...Ch. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - A biologist keeps a specimen of his favorite...Ch. 18 - Prob. 26PCh. 18 - A fish in a flat-sided aquarium sees a can of fish...Ch. 18 - Prob. 28PCh. 18 - A swim mask has a pocket of air between your eyes...Ch. 18 - An object is 30 cm in front of a converging lens...Ch. 18 - An object is 6.0 cm in front of a converging lens...Ch. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - A light bulb is 60 cm from a concave mirror with a...Ch. 18 - Prob. 40PCh. 18 - A dentist uses a curved mirror to view the back...Ch. 18 - Prob. 42PCh. 18 - An object is 12 cm in front of a convex mirror....Ch. 18 - A 2.0-cm-tall object is 40 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 10 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 75 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 60 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a...Ch. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 57PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61GPCh. 18 - You slowly back away from a plane mirror at a...Ch. 18 - Prob. 63GPCh. 18 - The place you get your hair cut has two nearly...Ch. 18 - Prob. 65GPCh. 18 - Prob. 66GPCh. 18 - Its nighttime, and youve dropped your goggles into...Ch. 18 - Figure P18.54 shows a meter stick lying on the...Ch. 18 - Prob. 69GPCh. 18 - Prob. 70GPCh. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - The glass core of an optical fiber has index of...Ch. 18 - A 150-cm-tall diver is standing completely...Ch. 18 - To a fish, the 4 00-mm-thick aquarium walls appear...Ch. 18 - A microscope is focused on an amoeba. When a...Ch. 18 - You need to use a 24-cm-focal-length lens to...Ch. 18 - A near-sighted person might correct his vision by...Ch. 18 - A 1.5-cm-tall object is 90 cm in front of a...Ch. 18 - A 2.0-cm-tall candle flame is 2.0 m from a wall....Ch. 18 - A 2.0-cm-diameter spider is 2.0 m from a wall....Ch. 18 - Figure P18.75 shows a meter stick held lengthwise...Ch. 18 - A slide projector needs to create a 98-cm-high...Ch. 18 - The pocket of hot air appears to be a pool of...Ch. 18 - Which of these changes would allow you to get...Ch. 18 - If you could clearly see the image of an object...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In a population, what is the consequence of inbreeding? Does inbreeding change allele frequencies? What is the ...
Genetic Analysis: An Integrated Approach (3rd Edition)
What general procedures are used to reduce microbial numbers (microbial load) in water supplies?
Brock Biology of Microorganisms (15th Edition)
82. Calculate the mass percent composition of each element in each compound.
a.
b.
c.
d.
Introductory Chemistry (6th Edition)
28. Consider the reaction
Express the rate of the reaction in terms of the change in concentration of e...
Chemistry: Structure and Properties (2nd Edition)
Which of the following statements about the general functions of the nervous system is false?
The three primary...
Human Anatomy & Physiology (2nd Edition)
What dipeptides would be formed by heating a mixture of valine and N-protected leucine?
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A nearsighted man cannot see objects clearly beyond 20 cm from his eyes. How close must he stand to a mirror in order to see what he is doing when he shaves?arrow_forwardFigure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forward
- Curved glassair interfaces like those observed in an empty shot glass make it possible for total internal reflection to occur at the shot glasss internal surface. Consider a glass cylinder (n = 1.54) with an outer radius of 2.50 cm and an inner radius of 2.00 cm as shown in Figure P38.105. Find the minimum angle i such that there is total internal reflection at the inner surface of the shot glass. FIGURE P38.105 Problems 105 and 106.arrow_forwardUnder what circumstances will an image be located at the focal point of a spherical lens or mirror?arrow_forwardWhich of the following is true of a concave lens? (7.4) (a) It is a converging lens. (b) It is thicker at the center than at the edge. (c) It is a lens that forms virtual images for Do f. (d) It is a lens that forms real images for Do f.arrow_forward
- What happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardA man inside a spherical diving bell watches a fish through a window in the bell, as in Figure P23.26. If the diving bell has radius R = 1.75 m and the fish is a distance p = 1 00 m from the window, calculate (a) the image distance and (b) the magnification. Neglect the thickness of the window. Figure P23.26arrow_forwardThe end of a solid glass rod of refractive index 1.50 is polished to have the shape of a hemispherical surface of radius 1.0 cm. A small object is placed in air (refractive index 1.00) on the axis 5.0 cm to the left of the vertex. Determine the position of the image.arrow_forward
- An observer to the right of the mirror-lens combination shown in Figure P36.89 (not to scale) sees two real images that are the same size and in the same location. One image is upright, and the other is inverted. Both images are 1.50 times larger than the object. The lens has a focal length of 10.0 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length of the mirror.arrow_forwardFigure P36.95 shows a thin converging lens for which the radii of curvature of its surfaces have magnitudes of 9.00 cm and 11.0 cm. The lens is in front of a concave spherical mirror with the radius of curvature R = 8.00 cm. Assume the focal points F1 and F2 of the lens are 5.00 cm from the center of the lens, (a) Determine the index of refraction of the lens material. The lens and mirror are 20.0 cm apart, and an object is placed 8.00 cm to the left of the lens. Determine (b) the position of the filial image and (c) its magnification as seen by the eye in the figure. (d) Is the final image inverted or upright? Explain.arrow_forwardAu object of height 3.0 cm is placed at 25 cm in front of a diverging lens of focal length 20 cm. Behind the diverging lens, there is a converging lens of focal length 20 cm. The distance between the lenses is 5.0 cm. Fluid the location and size of the final image.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY