In Problem 14 in Chapter 11, we described a study Showing that students are likely to improve their test
Scores if they go back and change answers after reconsidering some of the questions on the exam (Johnston, 1975). In the study, one group of students was encouraged to reconsider each question and
to change answer whenever they felt it was appropriate ate. The students were asked to record their original answers as well as the changes. For each student, the exam was graded based on the original answers and on the changed answers. For a group of n = 40 students
oppose that 26 had higher scores for the changed answer version and only 14 had higher scores for
the original-answer version. Is this result significantly
different from chance? Use a two-tailed test with a = .01.
There is some evidence suggesting that you are likely to improve your test score if you rethink and change answers on a multiple-choice ex am, (Johnston, 1975). To determine this phenomenon a teacher gave the same final exam to two section of a psychology course. The students in one section were told to tum in their exams immediately after finishing, without changing any of their answer. In the other section, students were encouraged to reconsider each question and to change answers whenever they felt it was appropriate. Before the final exam, the teacher had matched 9 students in the first section with 9 students in the second section based on their midterm grades. For example, a student in the no-change section with an 89 on the midterm exam was matched with student in the change section who also had an 89 on the midterm. The difference between the two final exam grades for each matched pair was computed and the data showed that the students who were allowed to change answers scoring higher by an average of MD = 7 point With SS = 288.
- Do the data indicate a significant difference between the two conditions? Use a two-tailed test with a = .05.
- Construct a 95% confidence
interval to estimate the size of the population mean difference.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Bundle: Statistics for the Behavioral Sciences, Loose-leaf Version, 10th + MindTap Psychology, 1 term (6 months) Printed Access Card
- solve the question based on hw 1, 1.41arrow_forwardT1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.arrow_forwardWe consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies: Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380. Strategy 2: Buy 55 shares of stock and borrow $430. Strategy 3: Buy 60 shares of stock and borrow $480. Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardCharacterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill