(a)
The direction in which the electron beam deflect as it passes between the plates bearing the potential difference.
(a)
Answer to Problem 1SP
The electrons will be deflected in the upward direction, which is toward the positive plate.
Explanation of Solution
The charge of electrons is negative. The electric field is directed from positive charge to the negative charge.
Any particle with negative charge, in an electric field experiences a force in the direction opposite to the direction of the electric field. This will result the particle to move in a direction opposite to the electric field.
In the given situation, the potential difference is set up between the two plates such that the positive plate is in the upper side and negative plate is in the lower side. Thus, the electric field will be directing in the downward direction.
Since the electrons are accelerated between these plates, the force on the electrons will be in the upward direction and hence they will get deflected in the upward direction.
Conclusion:
Therefore, the electrons will be deflected in the upward direction, which is toward the positive plate.
(b)
The electric field in the region between the plates.
(b)
Answer to Problem 1SP
The electric field in the region between the plates is
Explanation of Solution
Given info: The separation between the plates is
Write the expression between the potential difference in terms of electric field.
Here,
Solve for
Substitute
Conclusion:
Therefore, the electric field in the region between the plates is
(c)
The magnitude of force exerted on an individual electron by the electric field between the plates.
(c)
Answer to Problem 1SP
The magnitude of force exerted on an individual electron by the electric field between the plates is
Explanation of Solution
Given info: The electric field is
Electric field is the force exerted on a unit charge.
Write the expression for the electric field.
Here,
Solve for
The magnitude of charge of electron is
Substitute
Conclusion:
Therefore, the magnitude of force exerted on an individual electron by the electric field between the plates is
(d)
The magnitude and direction of the acceleration of the electron.
(d)
Answer to Problem 1SP
The electrons will have acceleration of
Explanation of Solution
Given info: The force on the electron is
Write the expression for the force on an object in terms of accelerations.
Here,
Solve for
The mass of electron is
Substitute
Since the force is acting on the upward direction, the acceleration will also be in the same direction. Thus, the electron will be accelerated in the upward direction.
Conclusion:
Therefore, the electrons will have acceleration of
(e)
The path followed by the electron when it passes through the potential difference.
(e)
Answer to Problem 1SP
The electron will follow a parabolic path towards the positively charged plate when it is accelerated between the plates.
Explanation of Solution
The trajectory of motion of a charged particle in an electric field is similar to the motion of a body in a constant gravitational field.
When the electron is accelerated between the charged plated beating a potential difference, the motion of the electron is deviated due to the force exerted by the electric field on the electron.
Since the electron experiences a force in the upward direction, offered by the electric field, it will follow a parabolic path towards the positively charged plate.
Conclusion:
Therefore, the electron will follow a parabolic path towards the positively charged plate when it is accelerated between the plates.
Want to see more full solutions like this?
Chapter 18 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON