
- a. What circuit supplies the workshop lighting? ________________
- b. What circuit supplies the plug-in strip over the workbench? ________________
- c. What circuit supplies the freezer receptacle? ________________
(a)

Mention the type of circuit that is used to supply the workshop lighting.
Answer to Problem 1R
The circuit used to supply the workshop lighting is A17.
Explanation of Solution
Discussion:
Refer to Figure 18-1 in the textbook that shows the conduit layout for workshop. In this layout, the lighting circuit is supplied by the branch circuit A17. In addition to supply the lighting, the circuit A17 also feeds the ceiling exhaust fan and chime transformer.
Conclusion:
Thus, the circuit used to supply the workshop lighting is A17.
(b)

Mention the type of circuit that is used to supply the plug-in strip over the workbench.
Answer to Problem 1R
The circuit used to supply the plug-in strip receptacles over the workbench is A18.
Explanation of Solution
Discussion:
Refer to Figure 18-1 in the textbook that shows the conduit layout for workshop. The plug-in strip receptacles and the receptacles connected to the right of the main panelboard are supplied with circuit A18. The receptacles mounted in an unfinished basement are protected with GFCI protection and accomplished by installing GFCI receptacles or GFCI circuit breakers in panelboard A.
Conclusion:
Thus, the circuit used to supply the plug-in strip receptacles over the workbench is A18.
(c)

Mention the type of circuit that is used to supply the freezer receptacle.
Answer to Problem 1R
The circuit used to supply the freezer receptacle is A13.
Explanation of Solution
Discussion:
Refer to Figure 18-1 in the textbook that shows the conduit layout for workshop. In this layout, the freezer single receptacle is supplied with circuit A13. Refer to Figure 18-9 in the textbook that shows the outlet boxes (a handy box) used for the freezer receptacles.
Conclusion:
Thus, the circuit used to supply the freezer receptacle is A13.
Want to see more full solutions like this?
Chapter 18 Solutions
EBK ELECTRICAL WIRING RESIDENTIAL
Additional Engineering Textbook Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
SURVEY OF OPERATING SYSTEMS
Mechanics of Materials (10th Edition)
Problem Solving with C++ (10th Edition)
Vector Mechanics For Engineers
Elementary Surveying: An Introduction To Geomatics (15th Edition)
- Q1. The three-phase full-wave converter in Figure shown is operated from a three phase Y-connected supply. Sketch the output voltages appeared at the load for firing angle 15°. I need Sketch an Ven จ T1 Q Yi₁ = I₂ a ia = is T₁ T3 T₂ Vbn b ib Load Highly inductive load ▲ T6 T₂ iT4 On T5, T6 T6, T₁ T2, T3 T3, T4 T4, T5 T5, T6 ཅ 0 T₁ الاسم T₁ Is wtarrow_forwardQ4. For the control system is shown in Figure 2, by using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the هندسة الكم following system, then compare your results for all types controllers? R(S) K C(s) S3+4S² +11S Figure (2)arrow_forwardQ1. Consider the unity feedback control system whose open-loop transfer function is: G(s): = 40(S+2) s(s+3)(s+1)(s + 10) ELECTRIC Ziegler-Nichols, By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then comp controllers? PARTME then compare your results for all types GINEARIarrow_forward
- Q2. Consider the control system whose open-loop transfer function is: G(s) = K قسم s (s2 +4.8s + 12.6) By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers?arrow_forwardQ3. For the control system is shown in Figure 1, by using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers? R(s) + C(s) 1 GES s(s+3)(s+6) PID controller Figure (1) INarrow_forwardUse Newton-Raphson method to solve the system x³+y-1=0 4 y³-x+1=0 with the starting value (xo,yo) = (1,0). Take n=4.arrow_forward
- Use Newton-Raphson method to solve the system 3x²y - 10x+7=0 y²-5y+4=0 With the starting value (xo, yo) = (0.5, 0.5). Take n = 1arrow_forwardUse Newton-Raphson method to solve the system x²-2xy+0.5= 0 x²+4y² 40 - with the starting value (xo, yo) = (2, 0.25) and two iteration number.arrow_forwardProblem 7 [2.5 pts] The response of an LTI system to u[n+2] appears to be the following sequence. -3-2-101234 Do we have enough information to determine the impulse response of this system? If so, derive it and plot it. If not, explain why.arrow_forward
- Problem 4 5' Consider the systems S₁(x[n]) = x[n]+5[n²−1] and S2(x[n]) = x[n(n−2)]. a [2 pts] Plot the impulse responses of S₁ and S2, respectively. b [2.5 pts] Determine whether S₁ and S2 are causal. Justify your answer in details. Warning: There will be no credit for just 'yes' or 'no' answer.arrow_forward22: Line charges PL 2π nC/m are located at xy-plane as shown in Figure-1, find the electric field intensity (E) at (0, 0, 2)? 2arrow_forward11.4 Determine Vout in the circuit shown in Fig. P11.4. through any methodarrow_forward
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT
