Why doesn’t the size of different molecules enter into the
The reason for the size of different molecules not being considered in ideal gas law.
Answer to Problem 1Q
The size of the molecule is not considered for the different molecules because the average distance between the molecules is far greater than the size of the molecules.
Explanation of Solution
The ideal gas law is defined based on the several basic postulates of the kinetic theory of gases. One of the postulates states that the molecules present in a closed container are sufficiently far enough from each other to consider their size on average.
Therefore, the size of the molecules is not considered as a prime factor in defining the ideal gas law. The ideal gas law considers the average size of all the molecules present in the closed container as they are comparably far away from each other as compared to their diameter.
So, this postulate eliminates the need for the size of the different molecules present it container. It rather uses the average size of molecules for the whole lot of the molecules present.
Conclusion:
Thus, the size of the molecule is not considered for the different molecules because the average distance between the molecules is far greater than the size of the molecules.
Want to see more full solutions like this?
Chapter 18 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Cosmic Perspective Fundamentals
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardTwo containers hold an ideal gas at the same temperature and pressure. Both containers hold the same type of gas, but container B has twice the volume of container A. (i) What is the average translational kinetic energy per molecule in container B? (a) twice that of container A (b) the same as that of container A (c) half that of container A (d) impossible to determine (ii) From the same choices, describe the internal energy of the gas in container B.arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward
- One cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forwardA gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forwardReview. This problem is a continuation of Problem 16.29 in Chapter 16. A hot-air balloon consists of an envelope of constant volume 400 m3. Not including the air inside, the balloon and cargo have mass 200 kg. The air outside and originally inside is a diatomic ideal gas at 10.0C and 101 kPa, with density 1.25 kg/m3. A propane burner at the center of the spherical envelope injects energy into the air inside. The air inside stays at constant pressure. Hot air, at just the temperature required to make the balloon lift off, starts to fill the envelope at its closed top, rapidly enough so that negligible energy flows by heat to the cool air below it or out through the wall of the balloon. Air at 10C leaves through an opening at the bottom of the envelope until the whole balloon is filled with hot air at uniform temperature. Then the burner is shut off and the balloon rises from the ground. (a) Evaluate the quantity of energy the burner must transfer to the air in the balloon. (b) The heat value of propanethe internal energy released by burning each kilogramis 50.3 MJ/kg. What mass of propane must be burned?arrow_forward
- Two cylinders A and B at the same temperature contain the same quantity of the same kind of gas. Cylinder A has three times the volume of cylinder B. What can you conclude about the pressures the gases exert? (a) We can conclude nothing about the pressures. (b) The pressure in A is three times the pressure in B. (c) The pressures must be equal. (d) The pressure in A must be one-third the pressure in B.arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forwardWhen we use the ideal gas law, the temperature must be in which of the following units? (5.6) (a) C (b) F (c) Karrow_forward
- Decades ago, it was thought that huge herbivorous dinosaurs such as Apatosaurus and Brachiosaurus habitually walked on the bottom of lakes, extending their long necks up to the surface to breathe. Brarhiosaurus had its nostrils on the top of its head. In 1977, Knut Schmidt-Nielsen pointed out that breathing would be too much work for such a creature. For a simple model, consider a sample consisting of 10.0 L of air at absolute pressure 2.00 atm, with density 2.40 kg/m3, located at the surface of a freshwater lake. Find the work required to transport it to a depth of 10.3 m, with its temperature, volume, and pressure remaining constant. This energy investment is greater than the energy that can be obtained by metabolism of food with the oxygen in that quantity of air.arrow_forwardHelium gas is in thermal equilibrium with liquid helium at 4.20 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of a helium atom (mass = 6.64 1027 kg) in it.arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning