Concept explainers
Characterizing Glycolysis List the reactions of glycolysis that
a. are energy consuming (under standard-stale conditions),
b. are energy yielding (under standard-state conditions),
c. consume ATP.
d. yield ATP
e. are strongly influenced by changes in concentration of substrate and product because of their molecularity.
f. are at or near equilibrium in the erythrocyte (see Table 18.2).
(a)
To write: The reaction of glycolysis which are energy consuming under standard-state conditions.
Introduction: Glycolysis is a series of chemical reaction in the body which synthesizes energy in the form of ATP by breaking down glucose molecules. Glycolysis is an extramitochondrial chemical reaction and takes place in the cytoplasm to produce energy in the form of ATP.
Reactions that consume energy to complete would have a positive value of
Explanation of Solution
The first step of Glycolysis is energy-consuming in nature.
The following reactions of glycolysis are energy consuming reactions:
Thus, the above reaction consumes energy and has positive value for both energies of the reaction.
(b)
To write: The reaction of glycolysis which are energy releasing under standard-state conditions.
Introduction: Glycolysis is a series of chemical reaction in the body which synthesizes energy in the form of ATP by breaking down glucose molecules. Glycolysis is an extramitochondrial chemical reaction and takes place in the cytoplasm to produce energy in the form of ATP.
Reactions that consume energy to complete would have a positive value of
Explanation of Solution
The following reactions of glycolysis are energy-releasing reactions:
Thus, the above reaction release energy and have a negative value for both energies of the reaction.
(c)
To write: We need to demonstrate the reaction of glycolysis which consumes ATP.
Introduction: Glycolysis is a series of chemical reaction in the body which synthesizes energy in the form of ATP by breaking down glucose molecules. Glycolysis is an extramitochondrial chemical reaction and takes place in the cytoplasm to produce energy in the form of ATP.
Reactions that consume energy to complete would have a positive value
Explanation of Solution
The following reactions of glycolysis consume ATP reactions:
Thus, the above reaction consumes ATP in the process of Glycolysis.
(d)
To write: the reaction of glycolysis which yields ATP.
Introduction: Glycolysis is a series of chemical reaction in the body which synthesizes energy in the form of ATP by breaking down glucose molecules. Glycolysis is an extramitochondrial chemical reaction and takes place in the cytoplasm to produce energy in the form of ATP.
Reactions that consume energy to complete would have a positive value
Explanation of Solution
The following reactions of glycolysis that yield ATP:
Thus, the above reaction yields ATP in the process of glycolysis. For each molecule of glucose, the above reaction will take place twice.
(e)
To write: The reaction of glycolysis which is strongly influenced by the changes in concentration of the substrate and product because of their molecularity.
Introduction: Glycolysis is a series of chemical reaction in the body which synthesizes energy in the form of ATP by breaking down glucose molecules. Glycolysis is an extramitochondrial chemical reaction and takes place in the cytoplasm to produce energy in the form of ATP.
Reactions that consume energy to complete would have a positive value
Explanation of Solution
This question can be answered in two ways: The closer the Gibb’s free energy is to Zero, the reaction is closer to the equilibrium state. This indicates that the products and reactants will affect the direction of the reaction. The following reactions of glycolysis are influenced by the changes in concentration of the substrate and product:
The second step is the change in Gibb’s free energy with the change in the concentrations. Gibb’s free energy changes with the formula
The equilibrium constant can be easily changed when there is a change in the concentration of products as compared to reactants. These change reactions occur in two steps:
Thus, the above two steps are strongly influenced by the changes in concentration of the substrate and product because of their molecularity.
(f)
To write: The reaction of glycolysis which is at or near equilibrium in the erythrocytes.
Introduction: Glycolysis is a series of chemical reaction in the body which synthesizes energy in the form of ATP by breaking down glucose molecules. Glycolysis is an extramitochondrial chemical reaction and takes place in the cytoplasm to produce energy in the form of ATP.
Reactions that consume energy to complete would have a positive value
Explanation of Solution
The following reactions of glycolysis are the reaction of glycolysis which is at or near equilibrium in the erythrocytes:
The closer the Gibb’s free energy to Zero, the reaction is closer to the equilibrium state. The following reactions indicate that under cellular conditions the free energy is very small and doesn’t require regulation.
Thus, the above reactions are at or near equilibrium in the erythrocytes.
Want to see more full solutions like this?
Chapter 18 Solutions
Biochemistry
- What would be the toxicological endpoints for neurotoxicity?arrow_forwardWhat are "endpoints" in toxicology exactly? Please give an intuitive easy explanationarrow_forwardFura-2 Fluorescence (Arbitrary Unit) 4500 4000 3500 3000 2500 2000 1500 1000 500 [Ca2+]=2970nM, 25°C [Ca2+] 2970nM, 4°C [Ca2+]=0.9nM, 25°C [Ca2+] = 0.9nM, 4°C 0 260 280 300 340 360 380 400 420 440 Wavelength (nm) ← < The figure on the LHS shows the excitation spectra of Fura-2 (Em = 510 nm) in 2 solutions with two different Ca2+ ion concentration as indicated. Except for temperature, the setting for excitation & signal acquisition was identical.< ப a) The unit in Y-axis is arbitrary (unspecified). Why? < < b) Compare & contrast the excitation wavelength of the Isosbestic Point of Fura-2 at 25 °C & 4 °C. Give a possible reason for the discrepancy. < c) The fluorescence intensity at 25 °C & 4 °C are different. Explain why with the concept of electronic configuration. <arrow_forward
- draw in the structure of each amino acid (as L-amino acids) using the Fischer projection style. an example has been included. Draw the structure for glycine, alanine, valine, isoleucine, methionine, proline, phenylalanine, tryptophan, serine, threonine, asparagine, glutamine, lysine, arginine, aspartic acid, glutamic acid, histidine, tyrosine, cysteinearrow_forwarddraw in the structure of each amino acid (as L-amino acids) using the Fischer projection style. an example has been includedarrow_forwarddraw in the structure of each amino acid (as L-amino acids) using the Fischer projection style. an example has been includedarrow_forward
- Draw out the following peptide H-R-K-E-D at physiological pH (~7.4). Make sure toreference table 3.1 for pKa values.arrow_forwardThe table provides the standard reduction potential, E', for relevant half-cell reactions. Half-reaction E'° (V) Oxaloacetate² + 2H+ + 2e malate²- -0.166 Pyruvate + 2H+ + 2e → lactate -0.185 Acetaldehyde + 2H+ + 2e¯ →→→ ethanol -0.197 NAD+ + H+ + 2e--> NADH -0.320 NADP+ + H+ + 2e →→ NADPH Acetoacetate + 2H+ + 2e¯ - -0.324 B-hydroxybutyrate -0.346 Which of the reactions listed would proceed in the direction shown, under standard conditions, in the presence of the appropriate enzymes? Malate + NAD+ oxaloacetate + NADH + H+ Malate + pyruvate oxaloacetate + lactate Pyruvate + NADH + H+ lactate + NAD+ Pyruvate + p-hydroxybutyrate lactate + acetoacetate Acetaldehyde + succinate ethanol + fumerate Acetoacetate + NADH + H+ → B-hydroxybutyrate + NAD+arrow_forwardArrange the four structures in order from most reduced to most oxidized. Most reduced R-CH2-CH3 R-CH2-CH₂-OH R-CH,-CHO R-CH₂-COO Most oxidizedarrow_forward
- for each pair of biomolecules, identify the type of reaction (oxidation-reduction, hydrolysis, isomerization, group transfer, or nternal rearrangement) required to convert the first molecule to the second. In each case, indicate the general type of enzyme and cofactor(s) c reactants required, and any other products that would result. R-CH-CH-CH-C-S-COA A(n) A(n) A(n) A(n) Palmitoyl-CoA R-CH-CH=CH-C-S-CoA ° trans-A-Enoyl-CoA reaction converts palmitoyl-CoA to trans-A2-enoyl-CoA. This reaction requires and also produces Coo HN-C-H CH₂ CH₂ CH CH CH, CH, L-Leucine CH, CH, D-Leucine 8/6881 COO HÌNH: reaction converts L-leucine to D-leucine. This reaction is catalyzed by a(n) H-C-OH H-C-OH C=0 HO-C-H HO-C-H H-C-OH H-C-OH H-C-OH CH,OH Glucose H-C-OH CH,OH Fructose OH OH OH CH-C-CH₂ reaction converts glucose to fructose. This reaction is catalyzed by a(n) OH OH OPO I CH-C-CH H Glycerol Glycerol 3-phosphate H reaction converts glycerol to glycerol 3-phosphate. This reaction requires H,N- H,N H…arrow_forwardAfter adding a small amount of ATP labeled with radioactive phosphorus in the terminal position, [7-32P]ATP, to a yeast extract, a researcher finds about half of the 32P activity in P; within a few minutes, but the concentration of ATP remains unchanged. She then carries out the same experiment using ATP labeled with 32P in the central position, [ẞ-³2P]ATP, but the 32P does not appear in P; within such a short time. Which statements explain these results? Yeast cells reincorporate P; released from [ß-³2P]ATP into ATP more quickly than P¡ released from [y-³2P]ATP. Only the terminal (y) phosphorous atom acts as an electrophilic target for nucleophilic attack. The terminal (y) phosphoryl group undergoes a more rapid turnover than the central (B) phosphate group. Yeast cells maintain ATP levels by regulating the synthesis and breakdown of ATP. Correct Answerarrow_forwardCompare the structure of the nucleoside triphosphate CTP with the structure of ATP. NH₂ 0- 0- 0- ·P—O—P—O—P—O—CH₂ H H H H OH OH Cytidine triphosphate (CTP) Consider the reaction: ATP + CDP ADP + CTP NH 0- 0- 0- ¯0— P—O— P—O—P-O-CH₂ H Η о H H OH OH Adenosine triphosphate (ATP) NH₂ Now predict the approximate K'eq for this reaction. Now predict the approximate AG for this reaction. Narrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningHuman Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning