
(i)
Interpretation:
Entropy of activation has to be calculated for second order gas-phase ozone decomposition which has frequency factor as
(i)

Explanation of Solution
Given information:
Entropy of activation:
In the problem statement it is said that the reaction takes place at low pressure. Hence, the reaction is assumed to be bimolecular and the rate constant is second-order.
The rate constant equation can also be given as shown below by use of Eyring equation.
Comparing the above equation with equation (1),
Therefore.
The above equation implies that,
It is known that
Substitution of the obtained values in the equation (1), entropy of activation can be calculated as shown below,
The entropy of activation is calculated as
(ii)
Interpretation:
Enthalpy of activation has to be calculated for second order gas-phase ozone decomposition which has frequency factor as
(ii)

Explanation of Solution
Given information:
Enthalpy of activation:
Enthalpy of activation can be given by the equation shown below,
Therefore, the enthalpy of activation is calculated as
(iii)
Interpretation:
Gibbs energy of activation has to be calculated for second order gas-phase ozone decomposition which has frequency factor as
(iii)

Explanation of Solution
Given information:
Enthalpy of activation (
Entropy of activation (
Gibbs energy of activation:
Gibbs energy can be calculated using the equation given below,
Substitution of the obtained values in equation (1), Gibbs energy of activation can be calculated as shown below,
Therefore, the Gibbs energy of activation is calculated as
Want to see more full solutions like this?
Chapter 18 Solutions
Atkins' Physical Chemistry
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Assign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forwarddescrive the energy levels of an atom and howan electron moces between themarrow_forwardRank each set of substituents using the Cahn-Ingold-Perlog sequence rules (priority) by numbering the highest priority substituent 1.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





