Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
9th Edition
ISBN: 9781305116429
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.88CP

(a)

To determine

To show: The left hand side of the given equation is 0 if m is even and 4Amω if m is odd.

(a)

Expert Solution
Check Mark

Answer to Problem 18.88CP

The left hand side of the given equation is 0 if m is even and 4Amω if m is odd.

Explanation of Solution

Given info: The frequency of wave is f , the amplitude of wave is A . The period of wave is described by y(t)={A0<t<T2AT2<t<T . The given equation is y(t)=n(Ansinnωt+Bncosnωt) .

Write the expression of the y(t) .

y(t)=n(Ansinnωt+Bncosnωt)

Multiply sinmωt both sides in above equation.

y(t)sinmωt=(Ansinnωt+Bncosnωt)(sinmωt)

Integrate the above equation over on period of time T .

0Ty(t)sinmωt=[n0TAn(sinnωt)(sinmωt)dt+0TBn(cosnωT)(sinnωT)dt] (1)

The term y(t) is a positive constant A for half of the period T and A for next half period.

The left side of the equation is,

0Ty(t)sinmωt=0T2Asinmωt+0T2Asinmωt=Amω[cosmω(T2)cos0]+Amω[cosmωTcosmω(T2)]={2Amωmodd0meven}+{2Amωmodd0meven}={4Amωmodd0meven}

Conclusion:

Therefore, the left hand side of the given equation is 0 if m is even and 4Amω if m is odd.

(b)

To determine

To show: The terms of the right hand side of the given equation involving Bn are equal to zero.

(b)

Expert Solution
Check Mark

Answer to Problem 18.88CP

The terms of the right hand side of the given equation involving Bn are equal to zero.

Explanation of Solution

Given info: The frequency of wave is f , the amplitude of wave is A . The period of wave is described by y(t)={A0<t<T2AT2<t<T . The given equation is y(t)=n(Ansinnωt+Bncosnωt) .

The part of the right hand of the equation (1) involving Bn is,

0TBn(cosnωT)(sinnωT)dt=12Bn0T[sin(nωt+mωt)sin(nωtmωt)]dt=0+0=0

Conclusion:

Therefore, the terms of the right hand side of the given equation involving Bn are equal to zero.

(c)

To determine

To show: The terms of the right hand side of the given equation involving An are equal to zero.

(c)

Expert Solution
Check Mark

Answer to Problem 18.88CP

The terms of the right hand side of the given equation involving An are equal to zero.

Explanation of Solution

Given info: The frequency of wave is f , the amplitude of wave is A . The period of wave is described by y(t)={A0<t<T2AT2<t<T . The given equation is y(t)=n(Ansinnωt+Bncosnωt) .

The part of the right hand of the equation (1) involving An is,

0TBn(cosnωT)(sinnωT)dt=12An0T[cos(nωtmωt)cos(nωt+mωt)]dt=12An0T[cos(nm)ωtcos(n+m)ωt]dt=12An[1(nm)ωsin(nm)ωt1(n+m)ωsin(n+m)ωt]0T=0

The integration of the sinθ over the period of cycle is zero.

Conclusion:

Therefore, the terms of the right hand side of the given equation involving An are equal to zero.

(d)

To determine

To show: The entire right hand side of the equation reduces to 12AmT .

(d)

Expert Solution
Check Mark

Answer to Problem 18.88CP

The entire right hand side of the equation reduces to 12AmT .

Explanation of Solution

Given info: The frequency of wave is f , the amplitude of wave is A . The period of wave is described by y(t)={A0<t<T2AT2<t<T . The given equation is y(t)=n(Ansinnωt+Bncosnωt) .

The right hand side of the equation (1) is,

[0TAn(sinnωt)(sinmωt)dt+0TBn(cosnωT)(sinnωT)dt]=[0TAn(sinnωt)(sinmωt)dt+120TBn(sin2nωT)dt]=0TAn(sinnωt)(sinmωt)dt+0

The integer n=m .

Substitute m for n in above equation.

0TAn(sinnωt)(sinmωt)dt=0TAm(sinmωt)(sinmωt)dt=12Am0T[cos(mm)ωT]dt=12Am0T1dt=12AmT

Conclusion:

Therefore, the entire right hand side of the equation reduces to 12AmT .

(e)

To determine

To show: The Fourier series expansion for a square wave is y(t)=n4Anπsinnωt .

(e)

Expert Solution
Check Mark

Answer to Problem 18.88CP

The Fourier series expansion for a square wave is y(t)=n4Anπsinnωt .

Explanation of Solution

Given info: The frequency of wave is f , the amplitude of wave is A . The period of wave is described by y(t)={A0<t<T2AT2<t<T . The given equation is y(t)=n(Ansinnωt+Bncosnωt) .

The general equation of y(t) is,

y(t)=Ansinnωt (2)

From the part (a), The value of 0Ty(t)sinmωtdt=4Amω when m is odd.

From the part (d), the value of 0Ty(t)sinmωtdt=12AmT , when n=m .

Therefore,

4Anω=12AmTAm=8AnωT

Substitute 2πT for ω in above equation.

Am=8An(2πT)T=4Anπ

Substitute Am for An in equation (2).

y(t)=Amsinnωt

Substitute 4Anπ for Am in above equation.

y(t)=4Anπsinnωt

Conclusion:

Therefore, the Fourier series expansion for a square wave is y(t)=n4Anπsinnωt .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 18 Solutions

Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)

Ch. 18 - When two tuning forks are sounded at the same...Ch. 18 - A tuning fork is known to vibrate with frequency...Ch. 18 - An archer shoots an arrow horizontally from the...Ch. 18 - As oppositely moving pulses of the same shape (one...Ch. 18 - Prob. 18.10OQCh. 18 - Suppose all six equal-length strings of an...Ch. 18 - Assume two identical sinusoidal waves are moving...Ch. 18 - Prob. 18.1CQCh. 18 - When two waves interfere constructively or...Ch. 18 - Prob. 18.3CQCh. 18 - What limits the amplitude of motion of a real...Ch. 18 - Prob. 18.5CQCh. 18 - An airplane mechanic notices that the sound from a...Ch. 18 - Despite a reasonably steady hand, a person often...Ch. 18 - Prob. 18.8CQCh. 18 - Does the phenomenon of wave interference apply...Ch. 18 - Two waves are traveling in the same direction...Ch. 18 - Two wave pulses A and B are moving in opposite...Ch. 18 - Two waves on one string are described by the wave...Ch. 18 - Two pulses of different amplitudes approach each...Ch. 18 - A tuning fork generates sound waves with a...Ch. 18 - The acoustical system shown in Figure OQ18.1 is...Ch. 18 - Two pulses traveling on the same string are...Ch. 18 - Two identical loudspeakers are placed on a wall...Ch. 18 - Two traveling sinusoidal waves are described by...Ch. 18 - Why is the following situation impossible? Two...Ch. 18 - Two sinusoidal waves on a string are defined by...Ch. 18 - Two identical sinusoidal waves with wavelengths of...Ch. 18 - Two identical loudspeakers 10.0 m apart are driven...Ch. 18 - Prob. 18.14PCh. 18 - Two sinusoidal waves traveling in opposite...Ch. 18 - Verify by direct substitution that the wave...Ch. 18 - Two transverse sinusoidal waves combining in a...Ch. 18 - A standing wave is described by the wave function...Ch. 18 - Two identical loudspeakers are driven in phase by...Ch. 18 - Prob. 18.20PCh. 18 - A string with a mass m = 8.00 g and a length L =...Ch. 18 - The 64.0-cm-long string of a guitar has a...Ch. 18 - The A string on a cello vibrates in its first...Ch. 18 - A taut string has a length of 2.60 m and is fixed...Ch. 18 - A certain vibrating string on a piano has a length...Ch. 18 - A string that is 30.0 cm long and has a mass per...Ch. 18 - In the arrangement shown in Figure P18.27, an...Ch. 18 - In the arrangement shown in Figure P17.14, an...Ch. 18 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 18 - Review. A sphere of mass M is supported by a...Ch. 18 - Prob. 18.31PCh. 18 - Review. A solid copper object hangs at the bottom...Ch. 18 - Prob. 18.33PCh. 18 - The Bay of Fundy, Nova Scotia, has the highest...Ch. 18 - An earthquake can produce a seiche in a lake in...Ch. 18 - High-frequency sound can be used to produce...Ch. 18 - Prob. 18.37PCh. 18 - Prob. 18.38PCh. 18 - Calculate the length of a pipe that has a...Ch. 18 - The overall length of a piccolo is 32.0 cm. The...Ch. 18 - The fundamental frequency of an open organ pipe...Ch. 18 - Prob. 18.42PCh. 18 - An air column in a glass tube is open at one end...Ch. 18 - Prob. 18.44PCh. 18 - Prob. 18.45PCh. 18 - A shower stall has dimensions 86.0 cm 86.0 cm ...Ch. 18 - Prob. 18.47PCh. 18 - Prob. 18.48PCh. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - Two adjacent natural frequencies of an organ pipe...Ch. 18 - Why is the following situation impossible? A...Ch. 18 - A student uses an audio oscillator of adjustable...Ch. 18 - An aluminum rod is clamped one-fourth of the way...Ch. 18 - Prob. 18.55PCh. 18 - Prob. 18.56PCh. 18 - In certain ranges of a piano keyboard, more than...Ch. 18 - Prob. 18.58PCh. 18 - Review. A student holds a tuning fork oscillating...Ch. 18 - An A-major chord consists of the notes called A,...Ch. 18 - Suppose a flutist plays a 523-Hz C note with first...Ch. 18 - A pipe open at both ends has a fundamental...Ch. 18 - Prob. 18.63APCh. 18 - Two strings are vibrating at the same frequency of...Ch. 18 - Prob. 18.65APCh. 18 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 18 - The fret closest to the bridge on a guitar is 21.4...Ch. 18 - Prob. 18.68APCh. 18 - A quartz watch contains a crystal oscillator in...Ch. 18 - Review. For the arrangement shown in Figure...Ch. 18 - Prob. 18.71APCh. 18 - Two speakers are driven by the same oscillator of...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Review. The top end of a yo-yo string is held...Ch. 18 - On a marimba (Fig. P18.75), the wooden bar that...Ch. 18 - A nylon siring has mass 5.50 g and length L = 86.0...Ch. 18 - Two train whistles have identical frequencies of...Ch. 18 - Review. A loudspeaker at the front of a room and...Ch. 18 - Prob. 18.79APCh. 18 - Prob. 18.80APCh. 18 - Prob. 18.81APCh. 18 - A standing wave is set up in a string of variable...Ch. 18 - Two waves are described by the wave functions...Ch. 18 - Prob. 18.84APCh. 18 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 18 - Review. An object of mass m hangs in equilibrium...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Prob. 18.88CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY