CP Oscillations of a Piston. A vertical cylinder of radius r contains an ideal gas and is fitted with a piston of mass m that is free to move ( Fig. P18.79 ). The piston and the walls of the cylinder are frictionless, and the entire cylinder is placed in a constant-temperature bath. The outside air pressure is p 0 . In equilibrium, the piston sits at a height h above the bottom of the cylinder. (a) Find the absolute pressure of the gas trapped below the piston when in equilibrium. (b) The piston is pulled up by a small distance and released. Find the net force acting on the piston when its base is a distance h + y above the bottom of the cylinder, where y ≪ h. (c) After the piston is displaced from equilibrium and released, it oscillates up and down. Find the frequency of these small oscillations. If the displacement is not small, are the oscillations simple harmonic? How can you tell? Figure P18.79
CP Oscillations of a Piston. A vertical cylinder of radius r contains an ideal gas and is fitted with a piston of mass m that is free to move ( Fig. P18.79 ). The piston and the walls of the cylinder are frictionless, and the entire cylinder is placed in a constant-temperature bath. The outside air pressure is p 0 . In equilibrium, the piston sits at a height h above the bottom of the cylinder. (a) Find the absolute pressure of the gas trapped below the piston when in equilibrium. (b) The piston is pulled up by a small distance and released. Find the net force acting on the piston when its base is a distance h + y above the bottom of the cylinder, where y ≪ h. (c) After the piston is displaced from equilibrium and released, it oscillates up and down. Find the frequency of these small oscillations. If the displacement is not small, are the oscillations simple harmonic? How can you tell? Figure P18.79
CP Oscillations of a Piston. A vertical cylinder of radius r contains an ideal gas and is fitted with a piston of mass m that is free to move (Fig. P18.79). The piston and the walls of the cylinder are frictionless, and the entire cylinder is placed in a constant-temperature bath. The outside air pressure is p0. In equilibrium, the piston sits at a height h above the bottom of the cylinder. (a) Find the absolute pressure of the gas trapped below the piston when in equilibrium. (b) The piston is pulled up by a small distance and released. Find the net force acting on the piston when its base is a distance h + y above the bottom of the cylinder, where y ≪ h. (c) After the piston is displaced from equilibrium and released, it oscillates up and down. Find the frequency of these small oscillations. If the displacement is not small, are the oscillations simple harmonic? How can you tell?
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
NOT AI PLS
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.