Concept explainers
A nylon siring has mass 5.50 g and length L = 86.0 cm. The lower end is tied to the floor, and the upper end is tied to a small set of wheels through a slot in a track on which the wheels move (Fig. P18.76). The wheels have a mass that is negligible compared with that of the siring, and they roll without friction on the track so that the upper end of the string is essentially free. Figure P18.76 At equilibrium, the string is vertical and motionless. When it is carrying a small-amplilude wave, you may assume the string is always under uniform tension 1.30 N. (a) Find the speed of transverse waves on the siring, (b) The string's vibration possibilities are a set of standing-wave states, each with a node at the fixed bottom end and an antinode at the free top end. Find the node-antinode distances for each of the three simplest states, (c) Find the frequency of each of these states.
(a)
The speed of transverse waves on the string.
Answer to Problem 18.76AP
The speed of transverse waves on the string is
Explanation of Solution
Given info: The length of the string is
The linear mass density of the string is,
Here,
Substitute
The formula for speed of string is,
Here,
Substitute
Conclusion:
Therefore, the speed of transverse waves on the string is
(b)
The node-antinodes distances for each of the three simplest states.
Answer to Problem 18.76AP
The node-antinodes distances are
Explanation of Solution
Given info: The length of the string is
Consider the first condition in which a node is formed at the fixed bottom and an antinode is at top.
For the above condition, the length of the string is,
Here,
Rewrite the above equation.
Substitute
The node-antinodes distance is,
Substitute
Consider the second condition in which two node is formed and an antinode is at top.
For the above condition, the length of the string is,
Rewrite the above equation.
Substitute
Thus, the wavelength is
Substitute
Consider the third condition in which three node is formed and an antinode is at top.
For the above condition, the length of the string is,
Rewrite the above equation.
Substitute
Thus, the wavelength is
Substitute
Conclusion:
Therefore, the node-antinodes distances are
(c)
The frequency of each conditions in part (b).
Answer to Problem 18.76AP
The frequencies are
Explanation of Solution
Given info: The length of the string is
The formula of frequency is,
Here,
For fist condition:
Substitute
For second condition:
Substitute
For third condition:
Substitute
Conclusion:
Therefore, the frequencies are
Want to see more full solutions like this?
Chapter 18 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning