To determine:
Condensed structural formula for activated lauric acid
Explanation of Solution
The condensed structural formula is an easier way to explain the structure of any molecule as it draws lines between group of atoms attached together and do not draw all the bonds.
Hence, the condensed structural formula for the activated acrylic acid is given as follows:
To determine:
Alpha and beta carbon atom in lauroyl- CoA
Explanation of Solution
The alpha and beta positions are determined from adjacent to the
To determine:
Explanation of Solution
The number of beta oxidation cycle for the complete oxidation of lauric acid.
Beta oxidation is a process where the fatty acid is degraded or broken down from its beta carbon position.
Hence, the number of beta oxidation cycles required depends upon the number of carbon atoms present in the acid molecule.
Every two carbon atoms in any acid will produce one acetyl CoA molecule, so when the lauric acid has 12 carbon atoms, it will produce a total of six acetyl CoA molecules.
Further, the number of beta oxidation cycle is considered as one number less than the number of acetyl CoA produced.
Hence, the beta oxidation cycles will be five.
To determine:
Explanation of Solution
The number of acetyl CoA produced from the complete oxidation of lauric acid.
Beta oxidation is a process where the fatty acid is degraded or broken down from its beta carbon position.
Hence, the number of acetyl CoA produced depends upon the number of carbon atoms present in the acid molecule.
Every two carbon atoms in any acid will produce one acetyl CoA molecule, so when the lauric acid has 12 carbon atoms, it will produce a total of six acetyl CoA molecules.
To determine:
Total ATP yield from the given table:
Explanation of Solution
Lauric Acid is a C12 fatty acid and for the activation of lauric acid 2 ATP are required.
The acetyl group of the acetyl CoA is formed by two carbons. And in the last round two acetyl CoA are produced. Accordingly, the number of cycles of ß-oxidation and the number of acetyl CoA produced has been calculated.
From the complete ß-oxidation of lauric acid, total six (6) acetyl CoA, 5 NADH and 6 FADH2 has been produced. Each Acetyl CoA yields 10 ATP, each NADH yields 2.5 ATP and each FADH2 yields 1.5 ATP. Accordingly, ATP yield has been calculated.
Formula used: Number of cycles of ß-oxidation needed for the complete oxidation of fatty acid =
Where n = Number of carbon atoms present in fatty acid.
Number of acetyl CoA produced from the complete oxidation of fatty acid =
Where n = Number of carbon atoms present in fatty acid.
Calculation: Here, number of carbon atoms in the given fatty acid = 12. So, by putting n = 12
Number of cycles of ß-oxidation needed for the complete oxidation of fatty acid =
Therefore, number of acetyl CoA produced from the complete oxidation of fatty acid =
Activation | -2 ATP | |
Acetyl CoA | 60ATP | |
NADH | 12.5 ATP | |
FADH2 | 7.5 ATP | |
Total | 78 ATP |
- -carbon atoms in lauroyl-CoA is:
- The number of beta oxidation cycle for complete oxidation of lauric acid will be five.
- The number of acetyl CoA produced from the complete oxidation of lauric acid will be six.
Activation | -2 ATP | |
Acetyl CoA | 60ATP | |
NADH | 12.5 ATP | |
FADH2 | 7.5 ATP | |
Total | 78 ATP |
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry: An Introduction to General, Organic, and Biological Chemistry, Books a la Carte Edition & Modified MasteringChemistry with Pearson eText -- ValuePack Access Card Package
- PLEASE ANSWER ALL PARTS!!arrow_forwardd) Determine the formal charge on the nitrogen atom in each of the structures. NH3 NH2 N C бобкат : N N H H Н H2N-OH A B C D E F Garrow_forwardLewis Structure, Hybridization & Molecular Geometry a) Draw the Lewis Structure of the molecules; Label the hybridization of each carbon atom; Predict the approximate molecular geometry around each carbon atom. CH3CHO CH3CN b) Draw the Lewis Structure of Nitromethane; Predict the approximate molecular geometry around the nitrogen atom. CH3NO2 c) Draw the Lewis Structure; Label the hybridization of the boron atom; Predict the approximate molecular geometry. BF3 BF4arrow_forward
- a. The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 " is best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: HO + :Ö: Bicarbonate is crucial for the control of body pH (for example, blood pH 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forwardCalibri 11 + BIL NAME: Jaylena M A student is investigating the ctect of volume on pressure during a lab activity. The student uses the following volumes (mL). 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 33, 34, 35, 38, 40, 42, 44. 46, and 50. As the volume changed they measured the following pressures (atm) 11.0, 10.5, 10.0, 9.2. 8.5, 78, 75, 7.0, 6.8, 6.5, 6.0, 5.9, 5.5, 5.0, 4.8, 4.5, 4.2, 3.9, 3.8, 3.5, 3.3, 3.2, 3.0, 2.9. What is the independent variable? Volume Imla What is the dependent variable? Pressure Jatm Use the data and make a PROPER data table. Volume 1mL) Pressure latm 110arrow_forwardDraw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor.arrow_forward
- : Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO₂ NO3arrow_forward1d. Use Le Chatelier's principle to describe the effect of the following changes on the position of the Haber-Bosch equilibrium: N2(g) + 3H2(g)= 2NH3(9) AH = -92kJ Choose one of the following answers: shift to reactant side, shift to product side or no change and draw the resulting graph. I. Increase the [N2(g)] Effect: H₂ N₂ NH3 II. Decrease the volume of the container. Effect: H₂ N₂2 NH3arrow_forwardf) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H₂C * H₂C CH2 C H2C * C Of H₂ 120°arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY