
Concept explainers
The hydrogen-oxygen fuel cell is described in Section 18.6. (a) What volume of H2(g), stored at 25°C at a pressure of 155 atm, would be needed to run an electric motor drawing a current of 8.5 A for 3.0 h? (b) What volume (in liters) of air at 25°C and 1.00 atm will have to pass into the cell per minute to run the motor? Assume that air is 20 percent O2 by volume and that all the O2 is consumed in the cell. The other components of air do not affect the fuel-cell reactions. Assume ideal gas behavior.
(a)

Interpretation:
Calculate the volume of hydrogen with pressure 155 atm that run an electric motor for 3 h and volume of air with 20%oxygen needed to run the electric motor per minute.
Concept introduction:
Hydrogen-Oxygen fuel cell works on the principle of oxidation of hydrogen and reduction of oxygen, it was made up of potassium hydroxide as an electrolyte solution and two inert electrodes. Hydrogen and oxygen gases were bubbled through the anode and cathode compartments. The cell reaction of hydrogen-oxygen fuel cell was shown below.
Calculation of the volume of hydrogen gas used for generating of electricity involves multistep
1) Calculation of total number of charges that flow through the circuit, since coulomb is the amount of electric charge flowing in a circuit in 1s, when current is 1A. So the above statement can represented by the following equation.
On dividing the number of charges with Faraday constant we can attain the number of moles of electron
From knowing the number of mole of electrons and using the stoichiometry of the reaction, the number of moles of the substance reduced or oxidized can be determined. This can be explained by the representative reaction as shown below.
2 mole of hydrogen releases 4 mole of electron, so the number of moles of hydrogen oxidized can calculated by the following equation.
Finally on substituting the number of moles of the product into the ideal gas equation the volume of the gas needed for the cell reaction can be achieved.
P = Pressure of the gas
V = Volume of the gas
R = Universal gas constant
T = Temperature in kelvin
n = Number of moles of the gas
Answer to Problem 18.40QP
For the anode reaction
Number of charges passing through the circuit can be calculated using the formula
Current = 8.5A
Time = 3 h or 10800s
So
Volume of hydrogen can calculated from ideal gas equation
Explanation of Solution
For the anode reaction
Number of charges passing through the circuit can be calculated using the formula
Current = 8.5A
Time = 3 h or 10800s
So
On dividing the number of charges by faraday constant number of moles of electrons passing the circuit can be calculated as shown below
Volume of hydrogen can calculated from ideal gas equation
The volume of hydrogen with pressure 155atm, needed to run a motor of 8.5A for 3 hrs was calculated to be 0.075L.
(b)

Interpretation:
Calculate the volume of hydrogen with pressure 155 atm that run an electric motor for 3 h and volume of air with 20%oxygen needed to run the electric motor per minute.
Concept introduction:
Hydrogen-Oxygen fuel cell works on the principle of oxidation of hydrogen and reduction of oxygen, it was made up of potassium hydroxide as an electrolyte solution and two inert electrodes. Hydrogen and oxygen gases were bubbled through the anode and cathode compartments. The cell reaction of hydrogen-oxygen fuel cell was shown below.
Calculation of the volume of hydrogen gas used for generating of electricity involves multistep
1) Calculation of total number of charges that flow through the circuit, since coulomb is the amount of electric charge flowing in a circuit in 1s, when current is 1A. So the above statement can represented by the following equation.
On dividing the number of charges with Faraday constant we can attain the number of moles of electron
From knowing the number of mole of electrons and using the stoichiometry of the reaction, the number of moles of the substance reduced or oxidized can be determined. This can be explained by the representative reaction as shown below.
2 mole of hydrogen releases 4 mole of electron, so the number of moles of hydrogen oxidized can calculated by the following equation.
Finally on substituting the number of moles of the product into the ideal gas equation the volume of the gas needed for the cell reaction can be achieved.
P = Pressure of the gas
V = Volume of the gas
R = Universal gas constant
T = Temperature in kelvin
n = Number of moles of the gas
Answer to Problem 18.40QP
For the cathode half reaction
Charges flowing through the circuit for 1 minute
Thus obtained number of moles of electron can be used to determine the number of moles of hydrogen
Volume of oxygen can be calculated by using ideal gas equation
Then volume of air flown can be calculated as follows
Explanation of Solution
The volume of air flowing through the fuel cell can calculated in a step by step manner
For the cathode half reaction
charges flowing through the circuit for 1 minute
Thus obtained number of moles of electron can be used to determine the number of moles of hydrogen
Volume of oxygen can be calculated by using ideal gas equation
Then volume of air flown can be calculated as follows
The volume of air with 20% oxygen and pressure 1atm, needed to run a motor of 8.5A for 1 hr was determined as 0.16L.
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry Atoms First, Second Edition
- What is surface excess according to the Gibbs model?arrow_forwardUsing Benzene as starting materid show how each of the Following molecules Contel Ve syntheswed CHI 9. b -50311 с CHY 503H Ночто d. อ •NOV e 11-0-650 NO2arrow_forwardThe molecule PYRIDINE, 6th electrons and is therefore aromatre and is Assigned the Following structure contering Since aromatk moleculoy undergo electrophilic anomatic substitution, Pyridine shodd undergo The Following reaction + HNO3 12504 a. write all of the possible Mononitration Products that could Result From this reaction 18. Bared upon the reaction mechanison determime which of these producty would be the major Product of the hegetionarrow_forward
- a. Explain Why electron withdrawing groups tend to be meta-Directors. Your answer Should lyclude all apropriate. Resonance contributing Structures fo. Explain why -ll is an outho -tura drccton even though chlorine has a very High Electronegativityarrow_forward9. Write Me product as well as the reaction Mechanism For each of the Following Vanctions +H₂504 4.50+ T C. +212 Fellz 237 b. Praw the potential energy Diagrams For each OF Mese Rauctions and account For any differences that appear in the two potential Puergy Diagrams which of here two reactions 19 Found to be Reversable, Rationalice your answer based upon the venation mechanisms and the potential energy diagrams.arrow_forward9. Write Me product as well as the reaction Mechanism For each of the Following Veritious +H2504 4.50+ + 1/₂ Felly ◎+ 7 b. Praw he potential energy Diagrams For each OF Mese Ronctions and account for any differences that appeak in the two potential Puergy Diagramsarrow_forward
- Draw the major product of this reaction. Ignore inorganic byproducts. Incorrect, 3 attempts remaining 1. excess Br2, NaOH 2. neutralizing workup Qarrow_forwardGiven the electrode Pt | Ag | Ag+ (aq), describe it.arrow_forwardAt 25°C, the reaction Zn2+ + 2e ⇄ Zn has a normal equilibrium potential versus the saturated calomel electrode of -1.0048 V. Determine the normal equilibrium potential of Zn versus the hydrogen electrode.Data: The calomel electrode potential is E° = 0.2420 V versus the normal hydrogen electrode.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





