Concept explainers
The hydrogen-oxygen fuel cell is described in Section 18.6. (a) What volume of H2(g), stored at 25°C at a pressure of 155 atm, would be needed to run an electric motor drawing a current of 8.5 A for 3.0 h? (b) What volume (liters) of air at 25°C and 1.00 atm will have to pass into the cell per minute to run the motor? Assume that air is 20 percent O2 by volume and that all the O2 is consumed in the cell. The other components of air do not affect the fuel-cell reactions. Assume ideal gas behavior.
(a)
Interpretation:
Calculate the volume of hydrogen with pressure 155 atm that run an electric motor for 3 h and volume of air with 20%oxygen needed to run the electric motor per minute.
Concept introduction:
Hydrogen-Oxygen fuel cell works on the principle of oxidation of hydrogen and reduction of oxygen, it was made up of potassium hydroxide as an electrolyte solution and two inert electrodes. Hydrogen and oxygen gases were bubbled through the anode and cathode compartments. The cell reaction of hydrogen-oxygen fuel cell was shown below.
Calculation of the volume of hydrogen gas used for generating of electricity involves multistep
1) Calculation of total number of charges that flow through the circuit, since coulomb is the amount of electric charge flowing in a circuit in 1s, when current is 1A. So the above statement can represented by the following equation.
On dividing the number of charges with Faraday constant we can attain the number of moles of electron
From knowing the number of mole of electrons and using the stoichiometry of the reaction, the number of moles of the substance reduced or oxidized can be determined. This can be explained by the representative reaction as shown below.
2 mole of hydrogen releases 4 mole of electron, so the number of moles of hydrogen oxidized can calculated by the following equation.
Finally on substituting the number of moles of the product into the ideal gas equation the volume of the gas needed for the cell reaction can be achieved.
P = Pressure of the gas
V = Volume of the gas
R = Universal gas constant
T = Temperature in kelvin
n = Number of moles of the gas
Answer to Problem 18.39QP
For the anode reaction
Number of charges passing through the circuit can be calculated using the formula
Current = 8.5A
Time = 3 h or 10800s
So
Volume of hydrogen can calculated from ideal gas equation
Explanation of Solution
For the anode reaction
Number of charges passing through the circuit can be calculated using the formula
Current = 8.5A
Time = 3 h or 10800s
So
On dividing the number of charges by faraday constant number of moles of electrons passing the circuit can be calculated as shown below
Volume of hydrogen can calculated from ideal gas equation
The volume of hydrogen with pressure 155atm, needed to run a motor of 8.5A for 3 hrs was calculated to be 0.075L.
(b)
Interpretation:
Calculate the volume of hydrogen with pressure 155 atm that run an electric motor for 3 h and volume of air with 20%oxygen needed to run the electric motor per minute.
Concept introduction:
Hydrogen-Oxygen fuel cell works on the principle of oxidation of hydrogen and reduction of oxygen, it was made up of potassium hydroxide as an electrolyte solution and two inert electrodes. Hydrogen and oxygen gases were bubbled through the anode and cathode compartments. The cell reaction of hydrogen-oxygen fuel cell was shown below.
Calculation of the volume of hydrogen gas used for generating of electricity involves multistep
1) Calculation of total number of charges that flow through the circuit, since coulomb is the amount of electric charge flowing in a circuit in 1s, when current is 1A. So the above statement can represented by the following equation.
On dividing the number of charges with Faraday constant we can attain the number of moles of electron
From knowing the number of mole of electrons and using the stoichiometry of the reaction, the number of moles of the substance reduced or oxidized can be determined. This can be explained by the representative reaction as shown below.
2 mole of hydrogen releases 4 mole of electron, so the number of moles of hydrogen oxidized can calculated by the following equation.
Finally on substituting the number of moles of the product into the ideal gas equation the volume of the gas needed for the cell reaction can be achieved.
P = Pressure of the gas
V = Volume of the gas
R = Universal gas constant
T = Temperature in kelvin
n = Number of moles of the gas
Answer to Problem 18.39QP
For the cathode half reaction
Charges flowing through the circuit for 1 minute
Thus obtained number of moles of electron can be used to determine the number of moles of hydrogen
Volume of oxygen can be calculated by using ideal gas equation
Then volume of air flown can be calculated as follows
Explanation of Solution
The volume of air flowing through the fuel cell can calculated in a step by step manner
For the cathode half reaction
charges flowing through the circuit for 1 minute
Thus obtained number of moles of electron can be used to determine the number of moles of hydrogen
Volume of oxygen can be calculated by using ideal gas equation
Then volume of air flown can be calculated as follows
The volume of air with 20% oxygen and pressure 1atm, needed to run a motor of 8.5A for 1 hr was determined as 0.16L.
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry
- An electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardChlorine, Cl2, is produced commercially by the electrolysis of aqueous sodium chloride. The anode reaction is 2Cl(aq)Cl2(g)+2e How long will it take to produce 2.00 kg of chlorine if the current is 5.00 102 A?arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forward
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardA 1.0-L sample of 1.0 M HCl solution has a 10.0 A current applied for 45 minutes. What is the pH of the solution after the electricity has been turned off?arrow_forwardAn electrode is prepared by dipping a silver strip into a solution saturated with silver thiocyanate, AgSCN, and containing 0.10 M SCN . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.45 V. What is the solubility product of silver thiocyanate?arrow_forward
- A voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardA potassium chloride solution is electrolyzed by passing a current through the solution using inert electrodes. A gas evolves at each electrode, and there is a large increase in pH of the solution. Write the half-reactions that occur at the anode and at the cathode.arrow_forwardElectrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forward
- The following two half-reactions arc involved in a voltaic cell. At standard conditions, what species is produced at each electrode? Ag++eAgE=0.80VNi2++2eNiE=0.25Varrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the standard potential for this cell? b. A nonstandard cell is set up at 25C with [Mg2+] = 1.00 105 M. The cell potential is observed to be 4.01 V. Calculate [Au3+] in this cell.arrow_forwardFor each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning