![Organic Chemistry (9th Edition)](https://www.bartleby.com/isbn_cover_images/9780321971371/9780321971371_largeCoverImage.gif)
Concept explainers
Draw structures of the following derivatives.
- a. the 2,4-dinitrophenylhydrazone of benzaldehyde
- b. the semicarbazone of cyclobutanone
- c. cyclopropanone oxime
- d. the ethylene acetal of hexan-3-one
- e. acetaldehyde dimethyl acetal
- f. the methyl hemiacetal of formaldehyde
- g. the (E) isomer of the ethyl imine of propiophenone
- h. the hemiacetal form of 5-hydroxypentanal
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 1.
Explanation of Solution
The given derivative is 2,4-dinitrophenylhydrazone of benzaldehyde.
The 2,4-dinitrophenylhydrazine is treated with benzaldehyde to form a 2,4-dinitrophenylhydrazone derivative.
The structure of 2,4-dinitrophenylhydrazone of benzaldehyde is given as,
Figure 1
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 2.
Explanation of Solution
The given derivative is semicarbazone of cyclobutanone.
The cyclobutanone is treated with semicarbazide to form a semicarbazone derivative.
The structure of semicarbazone of cyclobutanone is given as,
Figure 2
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 3.
Explanation of Solution
The given derivative is cyclopropanone oxime.
The cyclopropanone is treated with hydroxylamine to form an oxime.
The structure of cyclopropanone oxime is given as,
Figure 3
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 4.
Explanation of Solution
The given derivative is ethylene acetal of hexan-3-one.
The ethylene glycol is treated with hexan-3-one to form ethylene acetal of hexan-3-one.
The structure of ethylene acetal of hexan-3-one is given as,
Figure 4
(e)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 5.
Explanation of Solution
The given derivative is acetaldehyde dimethyl acetal.
The acetaldehyde is treated with two moles of ethyl alcohol to form acetaldehyde dimethyl acetal.
The structure of acetaldehyde dimethyl acetal is given as,
Figure 5
(f)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 6.
Explanation of Solution
The given derivative is methyl hemiacetal of formaldehyde.
The structure of hemiacetal of formaldehyde is given as,
Figure 6
(g)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 7.
Explanation of Solution
The given derivative is (E)-isomer of the ethyl imine of propiophenone.
The propiophenone is treated with ethyl amine to form an ethyl imine derivative.
The structure of (E)-isomer of the ethyl imine of propiophenone is given as,
Figure 7
(h)
![Check Mark](/static/check-mark.png)
Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 8.
Explanation of Solution
The given derivative is hemiacetal of 5-hydroxypentanal.
The structure of hemiacetal of 5-hydroxypentanal is given as,
Figure 8
Want to see more full solutions like this?
Chapter 18 Solutions
Organic Chemistry (9th Edition)
- 1. Provide a complete IUPAC name for each of the following compounds. a) b) c) OH OH OH a) b) c) 2. Provide a complete IUPAC name for each of the following compounds. a) b) a) OH b) он c) OB >=arrow_forwardc) 3. Provide a common name for each of the following alcohols. a) a) OH b) OH c) HO b) c) 4. Provide a common name for each of the following compounds. b) OH a) 5 a) Y OH c) OHarrow_forwardUsing the critical constants for water (refer to the table in the lecture slides), calculate the second virial coefficient. Assume that the compression factor (Z) is expressed as an expansion series in terms of pressure.arrow_forward
- +3413 pts /4800 Question 38 of 48 > Write the full electron configuration for a Kion. © Macmillan Learning electron configuration: ↓ Resources Solution Penalized → Al Tutor Write the full electron configuration for an Fion. electron configuration: T G 6 & 7 Y H כ Y 00 8 hp 9 J K no L 144 P 112 | t KC 47°F Clear ins prt sc delete ] backspace erarrow_forwardHow to solve these types of problems step by step? I'm so confused.arrow_forwardIdentify the expected product of the following Claisen rearrangement. || = IV OV 00000 5 ОН Он Он Он Он || III IV Varrow_forward
- Can you please color-code and explain how to solve this and any molecular orbital diagram given? I'm so confused; could you provide baby steps regardless of which problem type they gave me?arrow_forwardConsider the following structure. OH Esmolol The synthesis of this compound uses a building block derived from either ethylene oxide or epichlorohydrin. 1) Determine which building block was used: | 2) Draw the structure of the nucleophiles that were used along with this building block in the synthesis of the molecule. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. You do not have to consider stereochemistry. Θε {n [arrow_forward< 10:44 5GW 10 Question 7/8 Show Answer Convert 46.0 mm to inches (1 inch = 2.54 cm) 46.0 DAM STARTING AMOUNT 1 cm 1 in 46.0 mm x ☑ 10 mm 10 cm ADD FACTOR DELETE x() X × = 1.81 in = 1 10 Dam ANSWER RESET ១ 2.54 0.0460 mm 10 1000 in 0.001 11.7 m 4.60 18.1 cm 100 1.81 0.394 1 0.1 46.0 0.01 Tap here for additional resourcesarrow_forward
- < 10:44 Question 6/8 5GW (10 Submit A cake recipe calls for 230.0 mL of buttermilk. How 230.0 many cups is this? DAL STARTING AMOUNT × 1 cups 230.0 mL x = 0.9722 cups 230.0 mL ADD FACTOR DELETE (( ) = 1 cups 230.0 DAE ANSWER RESET ១ 9.722 × 105 0.8706 cups 8.706 × 104 1 L 8.706 × 105 0.9722 quart 10 100 mL 0.001 0.1 6.076 × 103 0.01 9.722 × 104 230.0 0.06076 4 1.0567 1000 6.076 × 104 Tap here for additional resourcesarrow_forward< 10:44 Question 6/8 5GW (10 Submit A cake recipe calls for 230.0 mL of buttermilk. How 230.0 many cups is this? DAL STARTING AMOUNT × 1 cups 230.0 mL x = 0.9722 cups 230.0 mL ADD FACTOR DELETE (( ) = 1 cups 230.0 DAE ANSWER RESET ១ 9.722 × 105 0.8706 cups 8.706 × 104 1 L 8.706 × 105 0.9722 quart 10 100 mL 0.001 0.1 6.076 × 103 0.01 9.722 × 104 230.0 0.06076 4 1.0567 1000 6.076 × 104 Tap here for additional resourcesarrow_forwardShow work in detailed of all the options. Don't give Ai generated solutionarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)